mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-12-21 14:09:41 +01:00
Reformat and rewrite _get_name_params (#57)
* Reformat
* rewrite _get_name_params
* Add workflow for automatic formatting
* Revert "Add workflow for automatic formatting"
This reverts commit 9111c5dbc1.
* revert Retrieval_based_Voice_Conversion_WebUI.ipynb
---------
Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
@@ -1,36 +1,47 @@
|
||||
import numpy as np,parselmouth,torch,pdb
|
||||
import numpy as np, parselmouth, torch, pdb
|
||||
from time import time as ttime
|
||||
import torch.nn.functional as F
|
||||
from config import x_pad,x_query,x_center,x_max
|
||||
from config import x_pad, x_query, x_center, x_max
|
||||
import scipy.signal as signal
|
||||
import pyworld,os,traceback,faiss
|
||||
class VC(object):
|
||||
def __init__(self,tgt_sr,device,is_half):
|
||||
self.sr=16000#hubert输入采样率
|
||||
self.window=160#每帧点数
|
||||
self.t_pad=self.sr*x_pad#每条前后pad时间
|
||||
self.t_pad_tgt=tgt_sr*x_pad
|
||||
self.t_pad2=self.t_pad*2
|
||||
self.t_query=self.sr*x_query#查询切点前后查询时间
|
||||
self.t_center=self.sr*x_center#查询切点位置
|
||||
self.t_max=self.sr*x_max#免查询时长阈值
|
||||
self.device=device
|
||||
self.is_half=is_half
|
||||
import pyworld, os, traceback, faiss
|
||||
|
||||
def get_f0(self,x, p_len,f0_up_key,f0_method,inp_f0=None):
|
||||
|
||||
class VC(object):
|
||||
def __init__(self, tgt_sr, device, is_half):
|
||||
self.sr = 16000 # hubert输入采样率
|
||||
self.window = 160 # 每帧点数
|
||||
self.t_pad = self.sr * x_pad # 每条前后pad时间
|
||||
self.t_pad_tgt = tgt_sr * x_pad
|
||||
self.t_pad2 = self.t_pad * 2
|
||||
self.t_query = self.sr * x_query # 查询切点前后查询时间
|
||||
self.t_center = self.sr * x_center # 查询切点位置
|
||||
self.t_max = self.sr * x_max # 免查询时长阈值
|
||||
self.device = device
|
||||
self.is_half = is_half
|
||||
|
||||
def get_f0(self, x, p_len, f0_up_key, f0_method, inp_f0=None):
|
||||
time_step = self.window / self.sr * 1000
|
||||
f0_min = 50
|
||||
f0_max = 1100
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
if(f0_method=="pm"):
|
||||
f0 = parselmouth.Sound(x, self.sr).to_pitch_ac(
|
||||
time_step=time_step / 1000, voicing_threshold=0.6,
|
||||
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
||||
pad_size=(p_len - len(f0) + 1) // 2
|
||||
if(pad_size>0 or p_len - len(f0) - pad_size>0):
|
||||
f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
|
||||
elif(f0_method=="harvest"):
|
||||
if f0_method == "pm":
|
||||
f0 = (
|
||||
parselmouth.Sound(x, self.sr)
|
||||
.to_pitch_ac(
|
||||
time_step=time_step / 1000,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=f0_min,
|
||||
pitch_ceiling=f0_max,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
f0 = np.pad(
|
||||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||
)
|
||||
elif f0_method == "harvest":
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=self.sr,
|
||||
@@ -42,25 +53,45 @@ class VC(object):
|
||||
f0 = signal.medfilt(f0, 3)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
# with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
tf0=self.sr//self.window#每秒f0点数
|
||||
if (inp_f0 is not None):
|
||||
delta_t=np.round((inp_f0[:,0].max()-inp_f0[:,0].min())*tf0+1).astype("int16")
|
||||
replace_f0=np.interp(list(range(delta_t)), inp_f0[:, 0]*100, inp_f0[:, 1])
|
||||
shape=f0[x_pad*tf0:x_pad*tf0+len(replace_f0)].shape[0]
|
||||
f0[x_pad*tf0:x_pad*tf0+len(replace_f0)]=replace_f0[:shape]
|
||||
tf0 = self.sr // self.window # 每秒f0点数
|
||||
if inp_f0 is not None:
|
||||
delta_t = np.round(
|
||||
(inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
|
||||
).astype("int16")
|
||||
replace_f0 = np.interp(
|
||||
list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
|
||||
)
|
||||
shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
|
||||
f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
|
||||
# with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
f0_coarse = np.rint(f0_mel).astype(np.int)
|
||||
return f0_coarse, f0bak#1-0
|
||||
return f0_coarse, f0bak # 1-0
|
||||
|
||||
def vc(self,model,net_g,sid,audio0,pitch,pitchf,times,index,big_npy,index_rate):#,file_index,file_big_npy
|
||||
def vc(
|
||||
self,
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio0,
|
||||
pitch,
|
||||
pitchf,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
): # ,file_index,file_big_npy
|
||||
feats = torch.from_numpy(audio0)
|
||||
if(self.is_half):feats=feats.half()
|
||||
else:feats=feats.float()
|
||||
if self.is_half:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
@@ -75,91 +106,196 @@ class VC(object):
|
||||
t0 = ttime()
|
||||
with torch.no_grad():
|
||||
logits = model.extract_features(**inputs)
|
||||
feats = model.final_proj(logits[0])
|
||||
feats = model.final_proj(logits[0])
|
||||
|
||||
if(isinstance(index,type(None))==False and isinstance(big_npy,type(None))==False and index_rate!=0):
|
||||
if (
|
||||
isinstance(index, type(None)) == False
|
||||
and isinstance(big_npy, type(None)) == False
|
||||
and index_rate != 0
|
||||
):
|
||||
npy = feats[0].cpu().numpy()
|
||||
if(self.is_half):npy=npy.astype("float32")
|
||||
if self.is_half:
|
||||
npy = npy.astype("float32")
|
||||
_, I = index.search(npy, 1)
|
||||
npy=big_npy[I.squeeze()]
|
||||
if(self.is_half):npy=npy.astype("float16")
|
||||
feats = torch.from_numpy(npy).unsqueeze(0).to(self.device)*index_rate + (1-index_rate)*feats
|
||||
npy = big_npy[I.squeeze()]
|
||||
if self.is_half:
|
||||
npy = npy.astype("float16")
|
||||
feats = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(self.device) * index_rate
|
||||
+ (1 - index_rate) * feats
|
||||
)
|
||||
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
t1 = ttime()
|
||||
p_len = audio0.shape[0]//self.window
|
||||
if(feats.shape[1]<p_len):
|
||||
p_len=feats.shape[1]
|
||||
if(pitch!=None and pitchf!=None):
|
||||
pitch=pitch[:,:p_len]
|
||||
pitchf=pitchf[:,:p_len]
|
||||
p_len=torch.tensor([p_len],device=self.device).long()
|
||||
p_len = audio0.shape[0] // self.window
|
||||
if feats.shape[1] < p_len:
|
||||
p_len = feats.shape[1]
|
||||
if pitch != None and pitchf != None:
|
||||
pitch = pitch[:, :p_len]
|
||||
pitchf = pitchf[:, :p_len]
|
||||
p_len = torch.tensor([p_len], device=self.device).long()
|
||||
with torch.no_grad():
|
||||
if(pitch!=None and pitchf!=None):
|
||||
audio1 = (net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
if pitch != None and pitchf != None:
|
||||
audio1 = (
|
||||
(net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
.astype(np.int16)
|
||||
)
|
||||
else:
|
||||
audio1 = (net_g.infer(feats, p_len, sid)[0][0, 0] * 32768).data.cpu().float().numpy().astype(np.int16)
|
||||
del feats,p_len,padding_mask
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
audio1 = (
|
||||
(net_g.infer(feats, p_len, sid)[0][0, 0] * 32768)
|
||||
.data.cpu()
|
||||
.float()
|
||||
.numpy()
|
||||
.astype(np.int16)
|
||||
)
|
||||
del feats, p_len, padding_mask
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
t2 = ttime()
|
||||
times[0] += (t1 - t0)
|
||||
times[2] += (t2 - t1)
|
||||
times[0] += t1 - t0
|
||||
times[2] += t2 - t1
|
||||
return audio1
|
||||
|
||||
def pipeline(self,model,net_g,sid,audio,times,f0_up_key,f0_method,file_index,file_big_npy,index_rate,if_f0,f0_file=None):
|
||||
if(file_big_npy!=""and file_index!=""and os.path.exists(file_big_npy)==True and os.path.exists(file_index)==True and index_rate!=0):
|
||||
def pipeline(
|
||||
self,
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio,
|
||||
times,
|
||||
f0_up_key,
|
||||
f0_method,
|
||||
file_index,
|
||||
file_big_npy,
|
||||
index_rate,
|
||||
if_f0,
|
||||
f0_file=None,
|
||||
):
|
||||
if (
|
||||
file_big_npy != ""
|
||||
and file_index != ""
|
||||
and os.path.exists(file_big_npy) == True
|
||||
and os.path.exists(file_index) == True
|
||||
and index_rate != 0
|
||||
):
|
||||
try:
|
||||
index = faiss.read_index(file_index)
|
||||
big_npy = np.load(file_big_npy)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
index=big_npy=None
|
||||
index = big_npy = None
|
||||
else:
|
||||
index=big_npy=None
|
||||
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode='reflect')
|
||||
index = big_npy = None
|
||||
audio_pad = np.pad(audio, (self.window // 2, self.window // 2), mode="reflect")
|
||||
opt_ts = []
|
||||
if(audio_pad.shape[0]>self.t_max):
|
||||
if audio_pad.shape[0] > self.t_max:
|
||||
audio_sum = np.zeros_like(audio)
|
||||
for i in range(self.window): audio_sum += audio_pad[i:i - self.window]
|
||||
for t in range(self.t_center, audio.shape[0],self.t_center):opt_ts.append(t - self.t_query + np.where(np.abs(audio_sum[t - self.t_query:t + self.t_query]) == np.abs(audio_sum[t - self.t_query:t + self.t_query]).min())[0][0])
|
||||
for i in range(self.window):
|
||||
audio_sum += audio_pad[i : i - self.window]
|
||||
for t in range(self.t_center, audio.shape[0], self.t_center):
|
||||
opt_ts.append(
|
||||
t
|
||||
- self.t_query
|
||||
+ np.where(
|
||||
np.abs(audio_sum[t - self.t_query : t + self.t_query])
|
||||
== np.abs(audio_sum[t - self.t_query : t + self.t_query]).min()
|
||||
)[0][0]
|
||||
)
|
||||
s = 0
|
||||
audio_opt=[]
|
||||
t=None
|
||||
t1=ttime()
|
||||
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode='reflect')
|
||||
p_len=audio_pad.shape[0]//self.window
|
||||
inp_f0=None
|
||||
if(hasattr(f0_file,'name') ==True):
|
||||
audio_opt = []
|
||||
t = None
|
||||
t1 = ttime()
|
||||
audio_pad = np.pad(audio, (self.t_pad, self.t_pad), mode="reflect")
|
||||
p_len = audio_pad.shape[0] // self.window
|
||||
inp_f0 = None
|
||||
if hasattr(f0_file, "name") == True:
|
||||
try:
|
||||
with open(f0_file.name,"r")as f:
|
||||
lines=f.read().strip("\n").split("\n")
|
||||
inp_f0=[]
|
||||
for line in lines:inp_f0.append([float(i)for i in line.split(",")])
|
||||
inp_f0=np.array(inp_f0,dtype="float32")
|
||||
with open(f0_file.name, "r") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
inp_f0 = []
|
||||
for line in lines:
|
||||
inp_f0.append([float(i) for i in line.split(",")])
|
||||
inp_f0 = np.array(inp_f0, dtype="float32")
|
||||
except:
|
||||
traceback.print_exc()
|
||||
sid=torch.tensor(sid,device=self.device).unsqueeze(0).long()
|
||||
pitch, pitchf=None,None
|
||||
if(if_f0==1):
|
||||
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key,f0_method,inp_f0)
|
||||
sid = torch.tensor(sid, device=self.device).unsqueeze(0).long()
|
||||
pitch, pitchf = None, None
|
||||
if if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(audio_pad, p_len, f0_up_key, f0_method, inp_f0)
|
||||
pitch = pitch[:p_len]
|
||||
pitchf = pitchf[:p_len]
|
||||
pitch = torch.tensor(pitch,device=self.device).unsqueeze(0).long()
|
||||
pitchf = torch.tensor(pitchf,device=self.device).unsqueeze(0).float()
|
||||
t2=ttime()
|
||||
times[1] += (t2 - t1)
|
||||
pitch = torch.tensor(pitch, device=self.device).unsqueeze(0).long()
|
||||
pitchf = torch.tensor(pitchf, device=self.device).unsqueeze(0).float()
|
||||
t2 = ttime()
|
||||
times[1] += t2 - t1
|
||||
for t in opt_ts:
|
||||
t=t//self.window*self.window
|
||||
if (if_f0 == 1):
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],pitch[:,s//self.window:(t+self.t_pad2)//self.window],pitchf[:,s//self.window:(t+self.t_pad2)//self.window],times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
t = t // self.window * self.window
|
||||
if if_f0 == 1:
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[s : t + self.t_pad2 + self.window],
|
||||
pitch[:, s // self.window : (t + self.t_pad2) // self.window],
|
||||
pitchf[:, s // self.window : (t + self.t_pad2) // self.window],
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
else:
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[s:t+self.t_pad2+self.window],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[s : t + self.t_pad2 + self.window],
|
||||
None,
|
||||
None,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
s = t
|
||||
if (if_f0 == 1):
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],pitch[:,t//self.window:]if t is not None else pitch,pitchf[:,t//self.window:]if t is not None else pitchf,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
if if_f0 == 1:
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[t:],
|
||||
pitch[:, t // self.window :] if t is not None else pitch,
|
||||
pitchf[:, t // self.window :] if t is not None else pitchf,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
else:
|
||||
audio_opt.append(self.vc(model,net_g,sid,audio_pad[t:],None,None,times,index,big_npy,index_rate)[self.t_pad_tgt:-self.t_pad_tgt])
|
||||
audio_opt=np.concatenate(audio_opt)
|
||||
del pitch,pitchf,sid
|
||||
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
||||
audio_opt.append(
|
||||
self.vc(
|
||||
model,
|
||||
net_g,
|
||||
sid,
|
||||
audio_pad[t:],
|
||||
None,
|
||||
None,
|
||||
times,
|
||||
index,
|
||||
big_npy,
|
||||
index_rate,
|
||||
)[self.t_pad_tgt : -self.t_pad_tgt]
|
||||
)
|
||||
audio_opt = np.concatenate(audio_opt)
|
||||
del pitch, pitchf, sid
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
return audio_opt
|
||||
|
||||
Reference in New Issue
Block a user