mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-12-22 22:50:06 +01:00
Format code (#727)
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
committed by
GitHub
parent
6c13f1fe52
commit
9739f3085d
@@ -1,4 +1,4 @@
|
||||
import faiss,torch,traceback,parselmouth,numpy as np,torchcrepe,torch.nn as nn,pyworld
|
||||
import faiss, torch, traceback, parselmouth, numpy as np, torchcrepe, torch.nn as nn, pyworld
|
||||
from fairseq import checkpoint_utils
|
||||
from lib.infer_pack.models import (
|
||||
SynthesizerTrnMs256NSFsid,
|
||||
@@ -6,29 +6,32 @@ from lib.infer_pack.models import (
|
||||
SynthesizerTrnMs768NSFsid,
|
||||
SynthesizerTrnMs768NSFsid_nono,
|
||||
)
|
||||
import os,sys
|
||||
import os, sys
|
||||
from time import time as ttime
|
||||
import torch.nn.functional as F
|
||||
import scipy.signal as signal
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from config import Config
|
||||
from multiprocessing import Manager as M
|
||||
|
||||
mm = M()
|
||||
config = Config()
|
||||
|
||||
|
||||
class RVC:
|
||||
def __init__(
|
||||
self, key, pth_path, index_path, index_rate, n_cpu,inp_q,opt_q,device
|
||||
self, key, pth_path, index_path, index_rate, n_cpu, inp_q, opt_q, device
|
||||
) -> None:
|
||||
"""
|
||||
初始化
|
||||
"""
|
||||
try:
|
||||
global config
|
||||
self.inp_q=inp_q
|
||||
self.opt_q=opt_q
|
||||
self.device=device
|
||||
self.inp_q = inp_q
|
||||
self.opt_q = opt_q
|
||||
self.device = device
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
@@ -81,7 +84,7 @@ class RVC:
|
||||
self.net_g = self.net_g.half()
|
||||
else:
|
||||
self.net_g = self.net_g.float()
|
||||
self.is_half=config.is_half
|
||||
self.is_half = config.is_half
|
||||
except:
|
||||
print(traceback.format_exc())
|
||||
|
||||
@@ -102,29 +105,33 @@ class RVC:
|
||||
|
||||
def get_f0(self, x, f0_up_key, n_cpu, method="harvest"):
|
||||
n_cpu = int(n_cpu)
|
||||
if (method == "crepe"): return self.get_f0_crepe(x, f0_up_key)
|
||||
if (method == "rmvpe"): return self.get_f0_rmvpe(x, f0_up_key)
|
||||
if (method == "pm"):
|
||||
if method == "crepe":
|
||||
return self.get_f0_crepe(x, f0_up_key)
|
||||
if method == "rmvpe":
|
||||
return self.get_f0_rmvpe(x, f0_up_key)
|
||||
if method == "pm":
|
||||
p_len = x.shape[0] // 160
|
||||
f0 = (
|
||||
parselmouth.Sound(x, 16000)
|
||||
.to_pitch_ac(
|
||||
.to_pitch_ac(
|
||||
time_step=0.01,
|
||||
voicing_threshold=0.6,
|
||||
pitch_floor=50,
|
||||
pitch_ceiling=1100,
|
||||
)
|
||||
.selected_array["frequency"]
|
||||
.selected_array["frequency"]
|
||||
)
|
||||
|
||||
pad_size = (p_len - len(f0) + 1) // 2
|
||||
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
|
||||
print(pad_size, p_len - len(f0) - pad_size)
|
||||
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
|
||||
f0 = np.pad(
|
||||
f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant"
|
||||
)
|
||||
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
if (n_cpu == 1):
|
||||
if n_cpu == 1:
|
||||
f0, t = pyworld.harvest(
|
||||
x.astype(np.double),
|
||||
fs=16000,
|
||||
@@ -142,23 +149,27 @@ class RVC:
|
||||
res_f0 = mm.dict()
|
||||
for idx in range(n_cpu):
|
||||
tail = part_length * (idx + 1) + 320
|
||||
if (idx == 0):
|
||||
if idx == 0:
|
||||
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||||
else:
|
||||
self.inp_q.put((idx, x[part_length * idx - 320:tail], res_f0, n_cpu, ts))
|
||||
while (1):
|
||||
self.inp_q.put(
|
||||
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
||||
)
|
||||
while 1:
|
||||
res_ts = self.opt_q.get()
|
||||
if (res_ts == ts):
|
||||
if res_ts == ts:
|
||||
break
|
||||
f0s = [i[1] for i in sorted(res_f0.items(), key=lambda x: x[0])]
|
||||
for idx, f0 in enumerate(f0s):
|
||||
if (idx == 0):
|
||||
if idx == 0:
|
||||
f0 = f0[:-3]
|
||||
elif (idx != n_cpu - 1):
|
||||
elif idx != n_cpu - 1:
|
||||
f0 = f0[2:-3]
|
||||
else:
|
||||
f0 = f0[2:-1]
|
||||
f0bak[part_length * idx // 160:part_length * idx // 160 + f0.shape[0]] = f0
|
||||
f0bak[
|
||||
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
|
||||
] = f0
|
||||
f0bak = signal.medfilt(f0bak, 3)
|
||||
f0bak *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0bak)
|
||||
@@ -184,16 +195,28 @@ class RVC:
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def get_f0_rmvpe(self, x, f0_up_key):
|
||||
if (hasattr(self, "model_rmvpe") == False):
|
||||
if hasattr(self, "model_rmvpe") == False:
|
||||
from rmvpe import RMVPE
|
||||
|
||||
print("loading rmvpe model")
|
||||
self.model_rmvpe = RMVPE("rmvpe.pt", is_half=self.is_half, device=self.device)
|
||||
self.model_rmvpe = RMVPE(
|
||||
"rmvpe.pt", is_half=self.is_half, device=self.device
|
||||
)
|
||||
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
||||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def infer(self, feats: torch.Tensor, indata: np.ndarray, rate1, rate2, cache_pitch, cache_pitchf, f0method) -> np.ndarray:
|
||||
def infer(
|
||||
self,
|
||||
feats: torch.Tensor,
|
||||
indata: np.ndarray,
|
||||
rate1,
|
||||
rate2,
|
||||
cache_pitch,
|
||||
cache_pitchf,
|
||||
f0method,
|
||||
) -> np.ndarray:
|
||||
feats = feats.view(1, -1)
|
||||
if config.is_half:
|
||||
feats = feats.half()
|
||||
@@ -209,13 +232,12 @@ class RVC:
|
||||
"output_layer": 9 if self.version == "v1" else 12,
|
||||
}
|
||||
logits = self.model.extract_features(**inputs)
|
||||
feats = self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||
feats = (
|
||||
self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
|
||||
)
|
||||
t2 = ttime()
|
||||
try:
|
||||
if (
|
||||
hasattr(self, "index")
|
||||
and self.index_rate != 0
|
||||
):
|
||||
if hasattr(self, "index") and self.index_rate != 0:
|
||||
leng_replace_head = int(rate1 * feats[0].shape[0])
|
||||
npy = feats[0][-leng_replace_head:].cpu().numpy().astype("float32")
|
||||
score, ix = self.index.search(npy, k=8)
|
||||
@@ -237,8 +259,10 @@ class RVC:
|
||||
t3 = ttime()
|
||||
if self.if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
||||
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0]:], pitch[:-1])
|
||||
cache_pitchf[:] = np.append(cache_pitchf[pitchf[:-1].shape[0]:], pitchf[:-1])
|
||||
cache_pitch[:] = np.append(cache_pitch[pitch[:-1].shape[0] :], pitch[:-1])
|
||||
cache_pitchf[:] = np.append(
|
||||
cache_pitchf[pitchf[:-1].shape[0] :], pitchf[:-1]
|
||||
)
|
||||
p_len = min(feats.shape[1], 13000, cache_pitch.shape[0])
|
||||
else:
|
||||
cache_pitch, cache_pitchf = None, None
|
||||
@@ -256,13 +280,17 @@ class RVC:
|
||||
with torch.no_grad():
|
||||
if self.if_f0 == 1:
|
||||
infered_audio = (
|
||||
self.net_g.infer(feats, p_len, cache_pitch, cache_pitchf, sid, rate2)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
self.net_g.infer(
|
||||
feats, p_len, cache_pitch, cache_pitchf, sid, rate2
|
||||
)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
)
|
||||
else:
|
||||
infered_audio = (
|
||||
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0].data.cpu().float()
|
||||
self.net_g.infer(feats, p_len, sid, rate2)[0][0, 0]
|
||||
.data.cpu()
|
||||
.float()
|
||||
)
|
||||
t5 = ttime()
|
||||
print("time->fea-index-f0-model:", t2 - t1, t3 - t2, t4 - t3, t5 - t4)
|
||||
|
||||
Reference in New Issue
Block a user