mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-12-22 14:39:44 +01:00
replace lib
This commit is contained in:
130
infer/lib/train/mel_processing.py
Normal file
130
infer/lib/train/mel_processing.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor
|
||||
"""
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor used to compress
|
||||
"""
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
return dynamic_range_compression_torch(magnitudes)
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
return dynamic_range_decompression_torch(magnitudes)
|
||||
|
||||
|
||||
# Reusable banks
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
"""Convert waveform into Linear-frequency Linear-amplitude spectrogram.
|
||||
|
||||
Args:
|
||||
y :: (B, T) - Audio waveforms
|
||||
n_fft
|
||||
sampling_rate
|
||||
hop_size
|
||||
win_size
|
||||
center
|
||||
Returns:
|
||||
:: (B, Freq, Frame) - Linear-frequency Linear-amplitude spectrogram
|
||||
"""
|
||||
# Validation
|
||||
if torch.min(y) < -1.07:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.07:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
# Window - Cache if needed
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
wnsize_dtype_device = str(win_size) + "_" + dtype_device
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
|
||||
dtype=y.dtype, device=y.device
|
||||
)
|
||||
|
||||
# Padding
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1),
|
||||
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
|
||||
mode="reflect",
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
# Complex Spectrogram :: (B, T) -> (B, Freq, Frame, RealComplex=2)
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, Freq, Frame, RealComplex=2) -> (B, Freq, Frame)
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
# MelBasis - Cache if needed
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
fmax_dtype_device = str(fmax) + "_" + dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(
|
||||
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
||||
)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
|
||||
dtype=spec.dtype, device=spec.device
|
||||
)
|
||||
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq=num_mels, Frame)
|
||||
melspec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
melspec = spectral_normalize_torch(melspec)
|
||||
return melspec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(
|
||||
y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
|
||||
):
|
||||
"""Convert waveform into Mel-frequency Log-amplitude spectrogram.
|
||||
|
||||
Args:
|
||||
y :: (B, T) - Waveforms
|
||||
Returns:
|
||||
melspec :: (B, Freq, Frame) - Mel-frequency Log-amplitude spectrogram
|
||||
"""
|
||||
# Linear-frequency Linear-amplitude spectrogram :: (B, T) -> (B, Freq, Frame)
|
||||
spec = spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center)
|
||||
|
||||
# Mel-frequency Log-amplitude spectrogram :: (B, Freq, Frame) -> (B, Freq=num_mels, Frame)
|
||||
melspec = spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
|
||||
return melspec
|
||||
Reference in New Issue
Block a user