This commit is contained in:
Ftps
2023-08-28 16:08:31 +09:00
parent 3c7f1f1407
commit 58e32b6def
55 changed files with 237 additions and 169 deletions

View File

@@ -1,6 +1,8 @@
# This code references https://huggingface.co/JosephusCheung/ASimilarityCalculatior/blob/main/qwerty.py
# Fill in the path of the model to be queried and the root directory of the reference models, and this script will return the similarity between the model to be queried and all reference models.
import sys, os
import os
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F

View File

@@ -1,5 +1,5 @@
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
import torch
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
if __name__ == "__main__":
MoeVS = True # 模型是否为MoeVoiceStudio原MoeSS使用

View File

@@ -2,34 +2,36 @@
对源特征进行检索
"""
import torch, pdb, os, parselmouth
import os
import pdb
import parselmouth
import torch
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# import torchcrepe
from time import time as ttime
# import pyworld
import librosa
import numpy as np
import scipy.signal as signal
import soundfile as sf
import torch.nn.functional as F
from fairseq import checkpoint_utils
# from models import SynthesizerTrn256#hifigan_nonsf
# from lib.infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid as SynthesizerTrn256,
) # hifigan_nsf
from scipy.io import wavfile
# from lib.infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf
from scipy.io import wavfile
from fairseq import checkpoint_utils
# import pyworld
import librosa
import torch.nn.functional as F
import scipy.signal as signal
# import torchcrepe
from time import time as ttime
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = r"E:\codes\py39\vits_vc_gpu_train\hubert_base.pt" #
print("load model(s) from {}".format(model_path))

View File

@@ -1,11 +1,14 @@
"""
格式直接cid为自带的index位aid放不下了通过字典来查反正就5w个
"""
import faiss, numpy as np, os
from sklearn.cluster import MiniBatchKMeans
import os
import traceback
from multiprocessing import cpu_count
import faiss
import numpy as np
from sklearn.cluster import MiniBatchKMeans
# ###########如果是原始特征要先写save
n_cpu = 0
if n_cpu == 0:

View File

@@ -1,7 +1,10 @@
"""
格式直接cid为自带的index位aid放不下了通过字典来查反正就5w个
"""
import faiss, numpy as np, os
import os
import faiss
import numpy as np
# ###########如果是原始特征要先写save
inp_root = r"E:\codes\py39\dataset\mi\2-co256"

View File

@@ -1,4 +1,6 @@
import torch, pdb
import pdb
import torch
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-suc\G_1000.pth")["model"]#sim_nsf#
# a=torch.load(r"E:\codes\py39\vits_vc_gpu_train\logs\ft-mi-freeze-vocoder-flow-enc_q\G_1000.pth")["model"]#sim_nsf#

View File

@@ -1,4 +1,5 @@
import soundfile
from ..lib.infer_pack.onnx_inference import OnnxRVC
hop_size = 512