mirror of
https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git
synced 2025-12-21 14:09:41 +01:00
optimize real-time vc
This commit is contained in:
@@ -46,23 +46,22 @@ def printt(strr, *args):
|
||||
# config.is_half=False########强制cpu测试
|
||||
class RVC:
|
||||
def __init__(
|
||||
self,
|
||||
key,
|
||||
pth_path,
|
||||
index_path,
|
||||
index_rate,
|
||||
n_cpu,
|
||||
inp_q,
|
||||
opt_q,
|
||||
config: Config,
|
||||
last_rvc=None,
|
||||
self,
|
||||
key,
|
||||
pth_path,
|
||||
index_path,
|
||||
index_rate,
|
||||
n_cpu,
|
||||
inp_q,
|
||||
opt_q,
|
||||
config: Config,
|
||||
last_rvc=None,
|
||||
) -> None:
|
||||
"""
|
||||
初始化
|
||||
"""
|
||||
try:
|
||||
if config.dml == True:
|
||||
|
||||
def forward_dml(ctx, x, scale):
|
||||
ctx.scale = scale
|
||||
res = x.clone().detach()
|
||||
@@ -76,13 +75,10 @@ class RVC:
|
||||
# device="cpu"########强制cpu测试
|
||||
self.device = config.device
|
||||
self.f0_up_key = key
|
||||
self.time_step = 160 / 16000 * 1000
|
||||
self.f0_min = 50
|
||||
self.f0_max = 1100
|
||||
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
|
||||
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
|
||||
self.sr = 16000
|
||||
self.window = 160
|
||||
self.n_cpu = n_cpu
|
||||
self.use_jit = self.config.use_jit
|
||||
self.is_half = config.is_half
|
||||
@@ -184,6 +180,7 @@ class RVC:
|
||||
if last_rvc is not None and hasattr(last_rvc, "model_rmvpe"):
|
||||
self.model_rmvpe = last_rvc.model_rmvpe
|
||||
if last_rvc is not None and hasattr(last_rvc, "model_fcpe"):
|
||||
self.device_fcpe = last_rvc.device_fcpe
|
||||
self.model_fcpe = last_rvc.model_fcpe
|
||||
except:
|
||||
printt(traceback.format_exc())
|
||||
@@ -199,14 +196,10 @@ class RVC:
|
||||
self.index_rate = new_index_rate
|
||||
|
||||
def get_f0_post(self, f0):
|
||||
f0_min = self.f0_min
|
||||
f0_max = self.f0_max
|
||||
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
|
||||
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
|
||||
f0bak = f0.copy()
|
||||
f0_mel = 1127 * np.log(1 + f0 / 700)
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
|
||||
f0_mel_max - f0_mel_min
|
||||
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * 254 / (
|
||||
self.f0_mel_max - self.f0_mel_min
|
||||
) + 1
|
||||
f0_mel[f0_mel <= 1] = 1
|
||||
f0_mel[f0_mel > 255] = 255
|
||||
@@ -221,6 +214,7 @@ class RVC:
|
||||
return self.get_f0_rmvpe(x, f0_up_key)
|
||||
if method == "fcpe":
|
||||
return self.get_f0_fcpe(x, f0_up_key)
|
||||
x = x.cpu().numpy()
|
||||
if method == "pm":
|
||||
p_len = x.shape[0] // 160 + 1
|
||||
f0_min = 65
|
||||
@@ -262,7 +256,7 @@ class RVC:
|
||||
self.inp_q.put((idx, x[:tail], res_f0, n_cpu, ts))
|
||||
else:
|
||||
self.inp_q.put(
|
||||
(idx, x[part_length * idx - 320 : tail], res_f0, n_cpu, ts)
|
||||
(idx, x[part_length * idx - 320: tail], res_f0, n_cpu, ts)
|
||||
)
|
||||
while 1:
|
||||
res_ts = self.opt_q.get()
|
||||
@@ -277,20 +271,19 @@ class RVC:
|
||||
else:
|
||||
f0 = f0[2:]
|
||||
f0bak[
|
||||
part_length * idx // 160 : part_length * idx // 160 + f0.shape[0]
|
||||
part_length * idx // 160: part_length * idx // 160 + f0.shape[0]
|
||||
] = f0
|
||||
f0bak = signal.medfilt(f0bak, 3)
|
||||
f0bak *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0bak)
|
||||
|
||||
def get_f0_crepe(self, x, f0_up_key):
|
||||
if "privateuseone" in str(self.device): ###不支持dml,cpu又太慢用不成,拿pm顶替
|
||||
return self.get_f0(x, f0_up_key, 1, "pm")
|
||||
audio = torch.tensor(np.copy(x))[None].float()
|
||||
if "privateuseone" in str(self.device): ###不支持dml,cpu又太慢用不成,拿fcpe顶替
|
||||
return self.get_f0(x, f0_up_key, 1, "fcpe")
|
||||
# printt("using crepe,device:%s"%self.device)
|
||||
f0, pd = torchcrepe.predict(
|
||||
audio,
|
||||
self.sr,
|
||||
x.unsqueeze(0).float(),
|
||||
16000,
|
||||
160,
|
||||
self.f0_min,
|
||||
self.f0_max,
|
||||
@@ -313,15 +306,11 @@ class RVC:
|
||||
|
||||
printt("Loading rmvpe model")
|
||||
self.model_rmvpe = RMVPE(
|
||||
# "rmvpe.pt", is_half=self.is_half if self.device.type!="privateuseone" else False, device=self.device if self.device.type!="privateuseone"else "cpu"####dml时强制对rmvpe用cpu跑
|
||||
# "rmvpe.pt", is_half=False, device=self.device####dml配置
|
||||
# "rmvpe.pt", is_half=False, device="cpu"####锁定cpu配置
|
||||
"assets/rmvpe/rmvpe.pt",
|
||||
is_half=self.is_half,
|
||||
device=self.device, ####正常逻辑
|
||||
device=self.device,
|
||||
use_jit=self.config.use_jit,
|
||||
)
|
||||
# self.model_rmvpe = RMVPE("aug2_58000_half.pt", is_half=self.is_half, device=self.device)
|
||||
f0 = self.model_rmvpe.infer_from_audio(x, thred=0.03)
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
@@ -329,41 +318,36 @@ class RVC:
|
||||
def get_f0_fcpe(self, x, f0_up_key):
|
||||
if hasattr(self, "model_fcpe") == False:
|
||||
from torchfcpe import spawn_bundled_infer_model
|
||||
|
||||
printt("Loading fcpe model")
|
||||
self.model_fcpe = spawn_bundled_infer_model(self.device)
|
||||
f0 = (
|
||||
self.model_fcpe.infer(
|
||||
torch.from_numpy(x).to(self.device).unsqueeze(0).float(),
|
||||
sr=16000,
|
||||
decoder_mode="local_argmax",
|
||||
threshold=0.006,
|
||||
)
|
||||
.squeeze()
|
||||
.cpu()
|
||||
.numpy()
|
||||
)
|
||||
if "privateuseone" in str(self.device):
|
||||
self.device_fcpe = "cpu"
|
||||
else:
|
||||
self.device_fcpe = self.device
|
||||
self.model_fcpe = spawn_bundled_infer_model(self.device_fcpe)
|
||||
f0 = self.model_fcpe.infer(
|
||||
x.to(self.device_fcpe).unsqueeze(0).float(),
|
||||
sr=16000,
|
||||
decoder_mode='local_argmax',
|
||||
threshold=0.006,
|
||||
).squeeze().cpu().numpy()
|
||||
f0 *= pow(2, f0_up_key / 12)
|
||||
return self.get_f0_post(f0)
|
||||
|
||||
def infer(
|
||||
self,
|
||||
feats: torch.Tensor,
|
||||
indata: np.ndarray,
|
||||
block_frame_16k,
|
||||
rate,
|
||||
cache_pitch,
|
||||
cache_pitchf,
|
||||
f0method,
|
||||
self,
|
||||
input_wav: torch.Tensor,
|
||||
block_frame_16k,
|
||||
skip_head,
|
||||
cache_pitch,
|
||||
cache_pitchf,
|
||||
f0method,
|
||||
) -> np.ndarray:
|
||||
feats = feats.view(1, -1)
|
||||
if self.config.is_half:
|
||||
feats = feats.half()
|
||||
else:
|
||||
feats = feats.float()
|
||||
feats = feats.to(self.device)
|
||||
t1 = ttime()
|
||||
with torch.no_grad():
|
||||
if self.config.is_half:
|
||||
feats = input_wav.half().view(1, -1)
|
||||
else:
|
||||
feats = input_wav.float().view(1, -1)
|
||||
padding_mask = torch.BoolTensor(feats.shape).to(self.device).fill_(False)
|
||||
inputs = {
|
||||
"source": feats,
|
||||
@@ -387,8 +371,8 @@ class RVC:
|
||||
if self.config.is_half:
|
||||
npy = npy.astype("float16")
|
||||
feats[0][-leng_replace_head:] = (
|
||||
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
|
||||
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
||||
torch.from_numpy(npy).unsqueeze(0).to(self.device) * self.index_rate
|
||||
+ (1 - self.index_rate) * feats[0][-leng_replace_head:]
|
||||
)
|
||||
else:
|
||||
printt("Index search FAILED or disabled")
|
||||
@@ -398,7 +382,13 @@ class RVC:
|
||||
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
|
||||
t3 = ttime()
|
||||
if self.if_f0 == 1:
|
||||
pitch, pitchf = self.get_f0(indata, self.f0_up_key, self.n_cpu, f0method)
|
||||
f0_extractor_frame = block_frame_16k + 800
|
||||
if f0method == "rmvpe":
|
||||
f0_extractor_frame = (
|
||||
5120 * ((f0_extractor_frame - 1) // 5120 + 1) - 160
|
||||
)
|
||||
input_wav = input_wav[-f0_extractor_frame:]
|
||||
pitch, pitchf = self.get_f0(input_wav, self.f0_up_key, self.n_cpu, f0method)
|
||||
start_frame = block_frame_16k // 160
|
||||
end_frame = len(cache_pitch) - (pitch.shape[0] - 4) + start_frame
|
||||
cache_pitch[:] = np.append(cache_pitch[start_frame:end_frame], pitch[3:-1])
|
||||
@@ -412,31 +402,28 @@ class RVC:
|
||||
t4 = ttime()
|
||||
feats = feats[:, :p_len, :]
|
||||
if self.if_f0 == 1:
|
||||
cache_pitch = cache_pitch[:p_len]
|
||||
cache_pitchf = cache_pitchf[:p_len]
|
||||
cache_pitch = torch.LongTensor(cache_pitch).unsqueeze(0).to(self.device)
|
||||
cache_pitchf = torch.FloatTensor(cache_pitchf).unsqueeze(0).to(self.device)
|
||||
cache_pitch = torch.LongTensor(cache_pitch[:p_len]).to(self.device).unsqueeze(0)
|
||||
cache_pitchf = torch.FloatTensor(cache_pitchf[:p_len]).to(self.device).unsqueeze(0)
|
||||
p_len = torch.LongTensor([p_len]).to(self.device)
|
||||
ii = 0 # sid
|
||||
sid = torch.LongTensor([ii]).to(self.device)
|
||||
sid = torch.LongTensor([0]).to(self.device)
|
||||
skip_head = torch.LongTensor([skip_head])
|
||||
with torch.no_grad():
|
||||
if self.if_f0 == 1:
|
||||
# printt(12222222222,feats.device,p_len.device,cache_pitch.device,cache_pitchf.device,sid.device,rate2)
|
||||
infered_audio = self.net_g.infer(
|
||||
feats,
|
||||
p_len,
|
||||
cache_pitch,
|
||||
cache_pitchf,
|
||||
sid,
|
||||
torch.FloatTensor([rate]),
|
||||
skip_head,
|
||||
)[0][0, 0].data.float()
|
||||
else:
|
||||
infered_audio = self.net_g.infer(
|
||||
feats, p_len, sid, torch.FloatTensor([rate])
|
||||
feats, p_len, sid, skip_head
|
||||
)[0][0, 0].data.float()
|
||||
t5 = ttime()
|
||||
printt(
|
||||
"Spent time: fea = %.2fs, index = %.2fs, f0 = %.2fs, model = %.2fs",
|
||||
"Spent time: fea = %.3fs, index = %.3fs, f0 = %.3fs, model = %.3fs",
|
||||
t2 - t1,
|
||||
t3 - t2,
|
||||
t4 - t3,
|
||||
|
||||
Reference in New Issue
Block a user