mirror of
https://github.com/myshell-ai/OpenVoice.git
synced 2025-12-16 16:37:56 +01:00
330 lines
9.9 KiB
Plaintext
330 lines
9.9 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "b6ee1ede",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Voice Style Control Demo"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"id": "b7f043ee",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/data/zwl/anaconda3/envs/openvoice/lib/python3.9/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
||
" from .autonotebook import tqdm as notebook_tqdm\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Importing the dtw module. When using in academic works please cite:\n",
|
||
" T. Giorgino. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package.\n",
|
||
" J. Stat. Soft., doi:10.18637/jss.v031.i07.\n",
|
||
"\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"import os\n",
|
||
"import torch\n",
|
||
"import se_extractor\n",
|
||
"from api import BaseSpeakerTTS, ToneColorConverter"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "15116b59",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Initialization"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"id": "aacad912",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Loaded checkpoint 'checkpoints/base_speakers/EN/checkpoint.pth'\n",
|
||
"missing/unexpected keys: [] []\n",
|
||
"Loaded checkpoint 'checkpoints/converter/checkpoint.pth'\n",
|
||
"missing/unexpected keys: [] []\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"ckpt_base = 'checkpoints/base_speakers/EN'\n",
|
||
"ckpt_converter = 'checkpoints/converter'\n",
|
||
"device = 'cuda:0'\n",
|
||
"output_dir = 'outputs'\n",
|
||
"\n",
|
||
"base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base}/config.json', device=device)\n",
|
||
"base_speaker_tts.load_ckpt(f'{ckpt_base}/checkpoint.pth')\n",
|
||
"\n",
|
||
"tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)\n",
|
||
"tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')\n",
|
||
"\n",
|
||
"os.makedirs(output_dir, exist_ok=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "7f67740c",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Obtain Tone Color Embedding"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "f8add279",
|
||
"metadata": {},
|
||
"source": [
|
||
"The `source_se` is the tone color embedding of the base speaker. \n",
|
||
"It is an average of multiple sentences generated by the base speaker. We directly provide the result here but\n",
|
||
"the readers feel free to extract `source_se` by themselves."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"id": "63ff6273",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"source_se = torch.load(f'{ckpt_base}/en_default_se.pth').to(device)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "4f71fcc3",
|
||
"metadata": {},
|
||
"source": [
|
||
"The `reference_speaker.mp3` below points to the short audio clip of the reference whose voice we want to clone. We provide an example here. If you use your own reference speakers, please **make sure each speaker has a unique filename.** The `se_extractor` will save the `targeted_se` using the filename of the audio and **will not automatically overwrite.**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "55105eae",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"reference_speaker = 'resources/example_reference.mp3'\n",
|
||
"target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "a40284aa",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Inference"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"id": "73dc1259",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" > Text splitted to sentences.\n",
|
||
"This audio is generated by OpenVoice.\n",
|
||
" > ===========================\n",
|
||
"ðɪs ˈɑdiˌoʊ ɪz ˈdʒɛnəɹˌeɪtɪd baɪ ˈoʊpən vɔɪs.\n",
|
||
" length:45\n",
|
||
" length:45\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"save_path = f'{output_dir}/output_en_default.wav'\n",
|
||
"\n",
|
||
"# Run the base speaker tts\n",
|
||
"text = \"This audio is generated by OpenVoice.\"\n",
|
||
"src_path = f'{output_dir}/tmp.wav'\n",
|
||
"base_speaker_tts.tts(text, src_path, speaker='default', language='English', speed=1.0)\n",
|
||
"\n",
|
||
"# Run the tone color converter\n",
|
||
"encode_message = \"@MyShell\"\n",
|
||
"tone_color_converter.convert(\n",
|
||
" audio_src_path=src_path, \n",
|
||
" src_se=source_se, \n",
|
||
" tgt_se=target_se, \n",
|
||
" output_path=save_path,\n",
|
||
" message=encode_message)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "6e3ea28a",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Try with different styles and speed.** The style can be controlled by the `speaker` parameter in the `base_speaker_tts.tts` method. Available choices: friendly, cheerful, excited, sad, angry, terrified, shouting, whispering. Note that the tone color embedding need to be updated. The speed can be controlled by the `speed` parameter. Let's try whispering with speed 0.9."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"id": "fd022d38",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" > Text splitted to sentences.\n",
|
||
"This audio is generated by OpenVoice with a half-performance model.\n",
|
||
" > ===========================\n",
|
||
"ðɪs ˈɑdiˌoʊ ɪz ˈdʒɛnəɹˌeɪtɪd baɪ ˈoʊpən vɔɪs wɪθ ə half-peɹfoɹmance* ˈmɑdəɫ.\n",
|
||
" length:76\n",
|
||
" length:75\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"source_se = torch.load(f'{ckpt_base}/en_style_se.pth').to(device)\n",
|
||
"save_path = f'{output_dir}/output_whispering.wav'\n",
|
||
"\n",
|
||
"# Run the base speaker tts\n",
|
||
"text = \"This audio is generated by OpenVoice with a half-performance model.\"\n",
|
||
"src_path = f'{output_dir}/tmp.wav'\n",
|
||
"base_speaker_tts.tts(text, src_path, speaker='whispering', language='English', speed=0.9)\n",
|
||
"\n",
|
||
"# Run the tone color converter\n",
|
||
"encode_message = \"@MyShell\"\n",
|
||
"tone_color_converter.convert(\n",
|
||
" audio_src_path=src_path, \n",
|
||
" src_se=source_se, \n",
|
||
" tgt_se=target_se, \n",
|
||
" output_path=save_path,\n",
|
||
" message=encode_message)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "5fcfc70b",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Try with different languages.** OpenVoice can achieve multi-lingual voice cloning by simply replace the base speaker. We provide an example with a Chinese base speaker here and we encourage the readers to try `demo_part2.ipynb` for a detailed demo."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"id": "a71d1387",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Building prefix dict from the default dictionary ...\n",
|
||
"Loading model from cache /tmp/jieba.cache\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Loaded checkpoint 'checkpoints/base_speakers/ZH/checkpoint.pth'\n",
|
||
"missing/unexpected keys: [] []\n",
|
||
" > Text splitted to sentences.\n",
|
||
"今天天气真好, 我们一起出去吃饭吧.\n",
|
||
" > ===========================\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"Loading model cost 0.808 seconds.\n",
|
||
"Prefix dict has been built successfully.\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"tʃ⁼in→tʰjɛn→tʰjɛn→tʃʰi↓ ts`⁼ən→ xɑʊ↓↑, wo↓↑mən i↓tʃʰi↓↑ ts`ʰu→tʃʰɥ↓ ts`ʰɹ`→fan↓ p⁼a.\n",
|
||
" length:85\n",
|
||
" length:85\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"\n",
|
||
"ckpt_base = 'checkpoints/base_speakers/ZH'\n",
|
||
"base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base}/config.json', device=device)\n",
|
||
"base_speaker_tts.load_ckpt(f'{ckpt_base}/checkpoint.pth')\n",
|
||
"\n",
|
||
"source_se = torch.load(f'{ckpt_base}/zh_default_se.pth').to(device)\n",
|
||
"save_path = f'{output_dir}/output_chinese.wav'\n",
|
||
"\n",
|
||
"# Run the base speaker tts\n",
|
||
"text = \"今天天气真好,我们一起出去吃饭吧。\"\n",
|
||
"src_path = f'{output_dir}/tmp.wav'\n",
|
||
"base_speaker_tts.tts(text, src_path, speaker='default', language='Chinese', speed=1.0)\n",
|
||
"\n",
|
||
"# Run the tone color converter\n",
|
||
"encode_message = \"@MyShell\"\n",
|
||
"tone_color_converter.convert(\n",
|
||
" audio_src_path=src_path, \n",
|
||
" src_se=source_se, \n",
|
||
" tgt_se=target_se, \n",
|
||
" output_path=save_path,\n",
|
||
" message=encode_message)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"id": "8e513094",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Tech for good.** For people who will deploy OpenVoice for public usage: We offer you the option to add watermark to avoid potential misuse. Please see the ToneColorConverter class. **MyShell reserves the ability to detect whether an audio is generated by OpenVoice**, no matter whether the watermark is added or not."
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"interpreter": {
|
||
"hash": "9d70c38e1c0b038dbdffdaa4f8bfa1f6767c43760905c87a9fbe7800d18c6c35"
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3.9.18 ('openvoice')",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.18"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|