mirror of
https://github.com/Mangio621/Mangio-RVC-Fork.git
synced 2025-12-15 19:17:41 +01:00
3095 lines
117 KiB
Python
3095 lines
117 KiB
Python
import os
|
||
import shutil
|
||
import sys
|
||
import json # Mangio fork using json for preset saving
|
||
import math
|
||
|
||
import signal
|
||
|
||
now_dir = os.getcwd()
|
||
sys.path.append(now_dir)
|
||
import traceback, pdb
|
||
import warnings
|
||
|
||
import numpy as np
|
||
import torch
|
||
import re
|
||
|
||
os.environ["OPENBLAS_NUM_THREADS"] = "1"
|
||
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
||
import logging
|
||
import threading
|
||
from random import shuffle
|
||
from subprocess import Popen
|
||
from time import sleep
|
||
|
||
import faiss
|
||
import ffmpeg
|
||
import gradio as gr
|
||
import soundfile as sf
|
||
from config import Config
|
||
from fairseq import checkpoint_utils
|
||
from i18n import I18nAuto
|
||
from lib.infer_pack.models import (
|
||
SynthesizerTrnMs256NSFsid,
|
||
SynthesizerTrnMs256NSFsid_nono,
|
||
SynthesizerTrnMs768NSFsid,
|
||
SynthesizerTrnMs768NSFsid_nono,
|
||
)
|
||
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
|
||
from infer_uvr5 import _audio_pre_, _audio_pre_new
|
||
from MDXNet import MDXNetDereverb
|
||
from my_utils import load_audio, CSVutil
|
||
from train.process_ckpt import change_info, extract_small_model, merge, show_info
|
||
from vc_infer_pipeline import VC
|
||
from sklearn.cluster import MiniBatchKMeans
|
||
|
||
tmp = os.path.join(now_dir, "TEMP")
|
||
shutil.rmtree(tmp, ignore_errors=True)
|
||
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
||
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
||
os.makedirs(tmp, exist_ok=True)
|
||
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
||
os.makedirs(os.path.join(now_dir, "audios"), exist_ok=True)
|
||
os.makedirs(os.path.join(now_dir, "datasets"), exist_ok=True)
|
||
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
||
os.environ["TEMP"] = tmp
|
||
warnings.filterwarnings("ignore")
|
||
torch.manual_seed(114514)
|
||
|
||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||
|
||
import csv
|
||
|
||
if not os.path.isdir("csvdb/"):
|
||
os.makedirs("csvdb")
|
||
frmnt, stp = open("csvdb/formanting.csv", "w"), open("csvdb/stop.csv", "w")
|
||
frmnt.close()
|
||
stp.close()
|
||
|
||
global DoFormant, Quefrency, Timbre
|
||
|
||
try:
|
||
DoFormant, Quefrency, Timbre = CSVutil("csvdb/formanting.csv", "r", "formanting")
|
||
DoFormant = (
|
||
lambda DoFormant: True
|
||
if DoFormant.lower() == "true"
|
||
else (False if DoFormant.lower() == "false" else DoFormant)
|
||
)(DoFormant)
|
||
except (ValueError, TypeError, IndexError):
|
||
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
|
||
CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre)
|
||
|
||
config = Config()
|
||
i18n = I18nAuto()
|
||
i18n.print()
|
||
# 判断是否有能用来训练和加速推理的N卡
|
||
ngpu = torch.cuda.device_count()
|
||
gpu_infos = []
|
||
mem = []
|
||
if_gpu_ok = False
|
||
|
||
isinterrupted = 0
|
||
|
||
if torch.cuda.is_available() or ngpu != 0:
|
||
for i in range(ngpu):
|
||
gpu_name = torch.cuda.get_device_name(i)
|
||
if any(
|
||
value in gpu_name.upper()
|
||
for value in [
|
||
"10",
|
||
"16",
|
||
"20",
|
||
"30",
|
||
"40",
|
||
"A2",
|
||
"A3",
|
||
"A4",
|
||
"P4",
|
||
"A50",
|
||
"500",
|
||
"A60",
|
||
"70",
|
||
"80",
|
||
"90",
|
||
"M4",
|
||
"T4",
|
||
"TITAN",
|
||
]
|
||
):
|
||
# A10#A100#V100#A40#P40#M40#K80#A4500
|
||
if_gpu_ok = True # 至少有一张能用的N卡
|
||
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
||
mem.append(
|
||
int(
|
||
torch.cuda.get_device_properties(i).total_memory
|
||
/ 1024
|
||
/ 1024
|
||
/ 1024
|
||
+ 0.4
|
||
)
|
||
)
|
||
if if_gpu_ok and len(gpu_infos) > 0:
|
||
gpu_info = "\n".join(gpu_infos)
|
||
default_batch_size = min(mem) // 2
|
||
else:
|
||
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
||
default_batch_size = 1
|
||
gpus = "-".join([i[0] for i in gpu_infos])
|
||
|
||
hubert_model = None
|
||
|
||
|
||
def load_hubert():
|
||
global hubert_model
|
||
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
||
["hubert_base.pt"],
|
||
suffix="",
|
||
)
|
||
hubert_model = models[0]
|
||
hubert_model = hubert_model.to(config.device)
|
||
if config.is_half:
|
||
hubert_model = hubert_model.half()
|
||
else:
|
||
hubert_model = hubert_model.float()
|
||
hubert_model.eval()
|
||
|
||
|
||
weight_root = "weights"
|
||
weight_uvr5_root = "uvr5_weights"
|
||
index_root = "./logs/"
|
||
audio_root = "audios"
|
||
names = []
|
||
for name in os.listdir(weight_root):
|
||
if name.endswith(".pth"):
|
||
names.append(name)
|
||
index_paths = []
|
||
|
||
global indexes_list
|
||
indexes_list = []
|
||
|
||
audio_paths = []
|
||
for root, dirs, files in os.walk(index_root, topdown=False):
|
||
for name in files:
|
||
if name.endswith(".index") and "trained" not in name:
|
||
index_paths.append("%s\\%s" % (root, name))
|
||
|
||
for root, dirs, files in os.walk(audio_root, topdown=False):
|
||
for name in files:
|
||
audio_paths.append("%s/%s" % (root, name))
|
||
|
||
uvr5_names = []
|
||
for name in os.listdir(weight_uvr5_root):
|
||
if name.endswith(".pth") or "onnx" in name:
|
||
uvr5_names.append(name.replace(".pth", ""))
|
||
|
||
|
||
def check_for_name():
|
||
if len(names) > 0:
|
||
return sorted(names)[0]
|
||
else:
|
||
return ""
|
||
|
||
|
||
def get_index():
|
||
if check_for_name() != "":
|
||
chosen_model = sorted(names)[0].split(".")[0]
|
||
logs_path = "./logs/" + chosen_model
|
||
if os.path.exists(logs_path):
|
||
for file in os.listdir(logs_path):
|
||
if file.endswith(".index"):
|
||
return os.path.join(logs_path, file).replace("\\", "/")
|
||
return ""
|
||
else:
|
||
return ""
|
||
|
||
|
||
def get_indexes():
|
||
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
||
for filename in filenames:
|
||
if filename.endswith(".index") and "trained" not in filename:
|
||
indexes_list.append(os.path.join(dirpath, filename).replace("\\", "/"))
|
||
if len(indexes_list) > 0:
|
||
return indexes_list
|
||
else:
|
||
return ""
|
||
|
||
|
||
fshift_presets_list = []
|
||
|
||
|
||
def get_fshift_presets():
|
||
fshift_presets_list = []
|
||
for dirpath, dirnames, filenames in os.walk("./formantshiftcfg/"):
|
||
for filename in filenames:
|
||
if filename.endswith(".txt"):
|
||
fshift_presets_list.append(
|
||
os.path.join(dirpath, filename).replace("\\", "/")
|
||
)
|
||
|
||
if len(fshift_presets_list) > 0:
|
||
return fshift_presets_list
|
||
else:
|
||
return ""
|
||
|
||
|
||
def vc_single(
|
||
sid,
|
||
input_audio_path0,
|
||
input_audio_path1,
|
||
f0_up_key,
|
||
f0_file,
|
||
f0_method,
|
||
file_index,
|
||
file_index2,
|
||
# file_big_npy,
|
||
index_rate,
|
||
filter_radius,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
protect,
|
||
crepe_hop_length,
|
||
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
||
global tgt_sr, net_g, vc, hubert_model, version
|
||
if input_audio_path0 is None or input_audio_path0 is None:
|
||
return "You need to upload an audio", None
|
||
f0_up_key = int(f0_up_key)
|
||
try:
|
||
if input_audio_path0 == "":
|
||
audio = load_audio(input_audio_path1, 16000, DoFormant, Quefrency, Timbre)
|
||
|
||
else:
|
||
audio = load_audio(input_audio_path0, 16000, DoFormant, Quefrency, Timbre)
|
||
|
||
audio_max = np.abs(audio).max() / 0.95
|
||
if audio_max > 1:
|
||
audio /= audio_max
|
||
times = [0, 0, 0]
|
||
if not hubert_model:
|
||
load_hubert()
|
||
if_f0 = cpt.get("f0", 1)
|
||
file_index = (
|
||
(
|
||
file_index.strip(" ")
|
||
.strip('"')
|
||
.strip("\n")
|
||
.strip('"')
|
||
.strip(" ")
|
||
.replace("trained", "added")
|
||
)
|
||
if file_index != ""
|
||
else file_index2
|
||
) # 防止小白写错,自动帮他替换掉
|
||
# file_big_npy = (
|
||
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
# )
|
||
audio_opt = vc.pipeline(
|
||
hubert_model,
|
||
net_g,
|
||
sid,
|
||
audio,
|
||
input_audio_path1,
|
||
times,
|
||
f0_up_key,
|
||
f0_method,
|
||
file_index,
|
||
# file_big_npy,
|
||
index_rate,
|
||
if_f0,
|
||
filter_radius,
|
||
tgt_sr,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
version,
|
||
protect,
|
||
crepe_hop_length,
|
||
f0_file=f0_file,
|
||
)
|
||
if tgt_sr != resample_sr >= 16000:
|
||
tgt_sr = resample_sr
|
||
index_info = (
|
||
"Using index:%s." % file_index
|
||
if os.path.exists(file_index)
|
||
else "Index not used."
|
||
)
|
||
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
||
index_info,
|
||
times[0],
|
||
times[1],
|
||
times[2],
|
||
), (tgt_sr, audio_opt)
|
||
except:
|
||
info = traceback.format_exc()
|
||
print(info)
|
||
return info, (None, None)
|
||
|
||
|
||
def vc_multi(
|
||
sid,
|
||
dir_path,
|
||
opt_root,
|
||
paths,
|
||
f0_up_key,
|
||
f0_method,
|
||
file_index,
|
||
file_index2,
|
||
# file_big_npy,
|
||
index_rate,
|
||
filter_radius,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
protect,
|
||
format1,
|
||
crepe_hop_length,
|
||
):
|
||
try:
|
||
dir_path = (
|
||
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
) # 防止小白拷路径头尾带了空格和"和回车
|
||
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
os.makedirs(opt_root, exist_ok=True)
|
||
try:
|
||
if dir_path != "":
|
||
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
||
else:
|
||
paths = [path.name for path in paths]
|
||
except:
|
||
traceback.print_exc()
|
||
paths = [path.name for path in paths]
|
||
infos = []
|
||
for path in paths:
|
||
info, opt = vc_single(
|
||
sid,
|
||
path,
|
||
None,
|
||
f0_up_key,
|
||
None,
|
||
f0_method,
|
||
file_index,
|
||
file_index2,
|
||
# file_big_npy,
|
||
index_rate,
|
||
filter_radius,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
protect,
|
||
crepe_hop_length,
|
||
)
|
||
if "Success" in info:
|
||
try:
|
||
tgt_sr, audio_opt = opt
|
||
if format1 in ["wav", "flac", "mp3", "ogg", "aac"]:
|
||
sf.write(
|
||
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
||
audio_opt,
|
||
tgt_sr,
|
||
)
|
||
else:
|
||
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
||
sf.write(
|
||
path,
|
||
audio_opt,
|
||
tgt_sr,
|
||
)
|
||
if os.path.exists(path):
|
||
os.system(
|
||
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
||
% (path, path[:-4] + ".%s" % format1)
|
||
)
|
||
except:
|
||
info += traceback.format_exc()
|
||
infos.append("%s->%s" % (os.path.basename(path), info))
|
||
yield "\n".join(infos)
|
||
yield "\n".join(infos)
|
||
except:
|
||
yield traceback.format_exc()
|
||
|
||
|
||
def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
|
||
infos = []
|
||
try:
|
||
inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
save_root_vocal = (
|
||
save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
)
|
||
save_root_ins = (
|
||
save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
||
)
|
||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||
pre_fun = MDXNetDereverb(15)
|
||
else:
|
||
func = _audio_pre_ if "DeEcho" not in model_name else _audio_pre_new
|
||
pre_fun = func(
|
||
agg=int(agg),
|
||
model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
|
||
device=config.device,
|
||
is_half=config.is_half,
|
||
)
|
||
if inp_root != "":
|
||
paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
|
||
else:
|
||
paths = [path.name for path in paths]
|
||
for path in paths:
|
||
inp_path = os.path.join(inp_root, path)
|
||
need_reformat = 1
|
||
done = 0
|
||
try:
|
||
info = ffmpeg.probe(inp_path, cmd="ffprobe")
|
||
if (
|
||
info["streams"][0]["channels"] == 2
|
||
and info["streams"][0]["sample_rate"] == "44100"
|
||
):
|
||
need_reformat = 0
|
||
pre_fun._path_audio_(
|
||
inp_path, save_root_ins, save_root_vocal, format0
|
||
)
|
||
done = 1
|
||
except:
|
||
need_reformat = 1
|
||
traceback.print_exc()
|
||
if need_reformat == 1:
|
||
tmp_path = "%s/%s.reformatted.wav" % (tmp, os.path.basename(inp_path))
|
||
os.system(
|
||
"ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
|
||
% (inp_path, tmp_path)
|
||
)
|
||
inp_path = tmp_path
|
||
try:
|
||
if done == 0:
|
||
pre_fun._path_audio_(
|
||
inp_path, save_root_ins, save_root_vocal, format0
|
||
)
|
||
infos.append("%s->Success" % (os.path.basename(inp_path)))
|
||
yield "\n".join(infos)
|
||
except:
|
||
infos.append(
|
||
"%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
|
||
)
|
||
yield "\n".join(infos)
|
||
except:
|
||
infos.append(traceback.format_exc())
|
||
yield "\n".join(infos)
|
||
finally:
|
||
try:
|
||
if model_name == "onnx_dereverb_By_FoxJoy":
|
||
del pre_fun.pred.model
|
||
del pre_fun.pred.model_
|
||
else:
|
||
del pre_fun.model
|
||
del pre_fun
|
||
except:
|
||
traceback.print_exc()
|
||
print("clean_empty_cache")
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
yield "\n".join(infos)
|
||
|
||
|
||
# 一个选项卡全局只能有一个音色
|
||
def get_vc(sid, to_return_protect0, to_return_protect1):
|
||
global n_spk, tgt_sr, net_g, vc, cpt, version
|
||
if sid == "" or sid == []:
|
||
global hubert_model
|
||
if hubert_model is not None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
||
print("clean_empty_cache")
|
||
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
||
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
###楼下不这么折腾清理不干净
|
||
if_f0 = cpt.get("f0", 1)
|
||
version = cpt.get("version", "v1")
|
||
if version == "v1":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs256NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
elif version == "v2":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs768NSFsid(
|
||
*cpt["config"], is_half=config.is_half
|
||
)
|
||
else:
|
||
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||
del net_g, cpt
|
||
if torch.cuda.is_available():
|
||
torch.cuda.empty_cache()
|
||
cpt = None
|
||
return (
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
)
|
||
person = "%s/%s" % (weight_root, sid)
|
||
print("loading %s" % person)
|
||
cpt = torch.load(person, map_location="cpu")
|
||
tgt_sr = cpt["config"][-1]
|
||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
||
if_f0 = cpt.get("f0", 1)
|
||
if if_f0 == 0:
|
||
to_return_protect0 = to_return_protect1 = {
|
||
"visible": False,
|
||
"value": 0.5,
|
||
"__type__": "update",
|
||
}
|
||
else:
|
||
to_return_protect0 = {
|
||
"visible": True,
|
||
"value": to_return_protect0,
|
||
"__type__": "update",
|
||
}
|
||
to_return_protect1 = {
|
||
"visible": True,
|
||
"value": to_return_protect1,
|
||
"__type__": "update",
|
||
}
|
||
version = cpt.get("version", "v1")
|
||
if version == "v1":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
||
else:
|
||
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
||
elif version == "v2":
|
||
if if_f0 == 1:
|
||
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
||
else:
|
||
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
||
del net_g.enc_q
|
||
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
||
net_g.eval().to(config.device)
|
||
if config.is_half:
|
||
net_g = net_g.half()
|
||
else:
|
||
net_g = net_g.float()
|
||
vc = VC(tgt_sr, config)
|
||
n_spk = cpt["config"][-3]
|
||
return (
|
||
{"visible": True, "maximum": n_spk, "__type__": "update"},
|
||
to_return_protect0,
|
||
to_return_protect1,
|
||
)
|
||
|
||
|
||
def change_choices():
|
||
names = []
|
||
for name in os.listdir(weight_root):
|
||
if name.endswith(".pth"):
|
||
names.append(name)
|
||
index_paths = []
|
||
audio_paths = []
|
||
audios_path = os.path.abspath(os.getcwd()) + "/audios/"
|
||
for root, dirs, files in os.walk(index_root, topdown=False):
|
||
for name in files:
|
||
if name.endswith(".index") and "trained" not in name:
|
||
index_paths.append("%s/%s" % (root, name))
|
||
for file in os.listdir(audios_path):
|
||
audio_paths.append("%s/%s" % (audio_root, file))
|
||
return (
|
||
{"choices": sorted(names), "__type__": "update"},
|
||
{"choices": sorted(index_paths), "__type__": "update"},
|
||
{"choices": sorted(audio_paths), "__type__": "update"},
|
||
)
|
||
|
||
|
||
def clean():
|
||
return {"value": "", "__type__": "update"}
|
||
|
||
|
||
sr_dict = {
|
||
"32k": 32000,
|
||
"40k": 40000,
|
||
"48k": 48000,
|
||
}
|
||
|
||
|
||
def if_done(done, p):
|
||
while 1:
|
||
if p.poll() is None:
|
||
sleep(0.5)
|
||
else:
|
||
break
|
||
done[0] = True
|
||
|
||
|
||
def if_done_multi(done, ps):
|
||
while 1:
|
||
# poll==None代表进程未结束
|
||
# 只要有一个进程未结束都不停
|
||
flag = 1
|
||
for p in ps:
|
||
if p.poll() is None:
|
||
flag = 0
|
||
sleep(0.5)
|
||
break
|
||
if flag == 1:
|
||
break
|
||
done[0] = True
|
||
|
||
|
||
def formant_enabled(
|
||
cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button
|
||
):
|
||
if cbox:
|
||
DoFormant = True
|
||
CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre)
|
||
|
||
# print(f"is checked? - {cbox}\ngot {DoFormant}")
|
||
|
||
return (
|
||
{"value": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
)
|
||
|
||
else:
|
||
DoFormant = False
|
||
CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre)
|
||
|
||
# print(f"is checked? - {cbox}\ngot {DoFormant}")
|
||
return (
|
||
{"value": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
)
|
||
|
||
|
||
def formant_apply(qfrency, tmbre):
|
||
Quefrency = qfrency
|
||
Timbre = tmbre
|
||
DoFormant = True
|
||
CSVutil("csvdb/formanting.csv", "w+", "formanting", DoFormant, qfrency, tmbre)
|
||
|
||
return (
|
||
{"value": Quefrency, "__type__": "update"},
|
||
{"value": Timbre, "__type__": "update"},
|
||
)
|
||
|
||
|
||
def update_fshift_presets(preset, qfrency, tmbre):
|
||
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
|
||
|
||
if str(preset) != "":
|
||
with open(str(preset), "r") as p:
|
||
content = p.readlines()
|
||
qfrency, tmbre = content[0].split("\n")[0], content[1]
|
||
|
||
formant_apply(qfrency, tmbre)
|
||
else:
|
||
pass
|
||
return (
|
||
{"choices": get_fshift_presets(), "__type__": "update"},
|
||
{"value": qfrency, "__type__": "update"},
|
||
{"value": tmbre, "__type__": "update"},
|
||
)
|
||
|
||
|
||
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
||
sr = sr_dict[sr]
|
||
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
||
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
||
f.close()
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
|
||
% (trainset_dir, sr, n_p, now_dir, exp_dir)
|
||
+ str(config.noparallel)
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
||
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||
done = [False]
|
||
threading.Thread(
|
||
target=if_done,
|
||
args=(
|
||
done,
|
||
p,
|
||
),
|
||
).start()
|
||
while 1:
|
||
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
||
yield (f.read())
|
||
sleep(1)
|
||
if done[0]:
|
||
break
|
||
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
||
log = f.read()
|
||
print(log)
|
||
yield log
|
||
|
||
|
||
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
||
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
|
||
gpus = gpus.split("-")
|
||
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
||
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
||
f.close()
|
||
if if_f0:
|
||
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
|
||
now_dir,
|
||
exp_dir,
|
||
n_p,
|
||
f0method,
|
||
echl,
|
||
)
|
||
print(cmd)
|
||
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
||
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||
done = [False]
|
||
threading.Thread(
|
||
target=if_done,
|
||
args=(
|
||
done,
|
||
p,
|
||
),
|
||
).start()
|
||
while 1:
|
||
with open(
|
||
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
||
) as f:
|
||
yield (f.read())
|
||
sleep(1)
|
||
if done[0]:
|
||
break
|
||
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
||
log = f.read()
|
||
print(log)
|
||
yield log
|
||
####对不同part分别开多进程
|
||
"""
|
||
n_part=int(sys.argv[1])
|
||
i_part=int(sys.argv[2])
|
||
i_gpu=sys.argv[3]
|
||
exp_dir=sys.argv[4]
|
||
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
||
"""
|
||
leng = len(gpus)
|
||
ps = []
|
||
for idx, n_g in enumerate(gpus):
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
|
||
% (
|
||
config.device,
|
||
leng,
|
||
idx,
|
||
n_g,
|
||
now_dir,
|
||
exp_dir,
|
||
version19,
|
||
)
|
||
)
|
||
print(cmd)
|
||
p = Popen(
|
||
cmd, shell=True, cwd=now_dir
|
||
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||
ps.append(p)
|
||
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
||
done = [False]
|
||
threading.Thread(
|
||
target=if_done_multi,
|
||
args=(
|
||
done,
|
||
ps,
|
||
),
|
||
).start()
|
||
while 1:
|
||
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
||
yield (f.read())
|
||
sleep(1)
|
||
if done[0]:
|
||
break
|
||
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
||
log = f.read()
|
||
print(log)
|
||
yield log
|
||
|
||
|
||
def change_sr2(sr2, if_f0_3, version19):
|
||
path_str = "" if version19 == "v1" else "_v2"
|
||
f0_str = "f0" if if_f0_3 else ""
|
||
if_pretrained_generator_exist = os.access(
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||
)
|
||
if_pretrained_discriminator_exist = os.access(
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||
)
|
||
if not if_pretrained_generator_exist:
|
||
print(
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||
"doesn't exist, will not use pretrained model",
|
||
)
|
||
if not if_pretrained_discriminator_exist:
|
||
print(
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||
"doesn't exist, will not use pretrained model",
|
||
)
|
||
return (
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
||
if if_pretrained_generator_exist
|
||
else "",
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
||
if if_pretrained_discriminator_exist
|
||
else "",
|
||
)
|
||
|
||
|
||
def change_version19(sr2, if_f0_3, version19):
|
||
path_str = "" if version19 == "v1" else "_v2"
|
||
if sr2 == "32k" and version19 == "v1":
|
||
sr2 = "40k"
|
||
to_return_sr2 = (
|
||
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
||
if version19 == "v1"
|
||
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
||
)
|
||
f0_str = "f0" if if_f0_3 else ""
|
||
if_pretrained_generator_exist = os.access(
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||
)
|
||
if_pretrained_discriminator_exist = os.access(
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
||
)
|
||
if not if_pretrained_generator_exist:
|
||
print(
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2),
|
||
"doesn't exist, will not use pretrained model",
|
||
)
|
||
if not if_pretrained_discriminator_exist:
|
||
print(
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2),
|
||
"doesn't exist, will not use pretrained model",
|
||
)
|
||
return (
|
||
"pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
||
if if_pretrained_generator_exist
|
||
else "",
|
||
"pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
||
if if_pretrained_discriminator_exist
|
||
else "",
|
||
to_return_sr2,
|
||
)
|
||
|
||
|
||
def change_f0(
|
||
if_f0_3,
|
||
sr2,
|
||
version19,
|
||
step2b,
|
||
gpus6,
|
||
gpu_info9,
|
||
extraction_crepe_hop_length,
|
||
but2,
|
||
info2,
|
||
): # f0method8,pretrained_G14,pretrained_D15
|
||
path_str = "" if version19 == "v1" else "_v2"
|
||
if_pretrained_generator_exist = os.access(
|
||
"pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK
|
||
)
|
||
if_pretrained_discriminator_exist = os.access(
|
||
"pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK
|
||
)
|
||
if not if_pretrained_generator_exist:
|
||
print(
|
||
"pretrained%s/f0G%s.pth" % (path_str, sr2),
|
||
"not exist, will not use pretrained model",
|
||
)
|
||
if not if_pretrained_discriminator_exist:
|
||
print(
|
||
"pretrained%s/f0D%s.pth" % (path_str, sr2),
|
||
"not exist, will not use pretrained model",
|
||
)
|
||
|
||
if if_f0_3:
|
||
return (
|
||
{"visible": True, "__type__": "update"},
|
||
"pretrained%s/f0G%s.pth" % (path_str, sr2)
|
||
if if_pretrained_generator_exist
|
||
else "",
|
||
"pretrained%s/f0D%s.pth" % (path_str, sr2)
|
||
if if_pretrained_discriminator_exist
|
||
else "",
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
)
|
||
|
||
return (
|
||
{"visible": False, "__type__": "update"},
|
||
("pretrained%s/G%s.pth" % (path_str, sr2))
|
||
if if_pretrained_generator_exist
|
||
else "",
|
||
("pretrained%s/D%s.pth" % (path_str, sr2))
|
||
if if_pretrained_discriminator_exist
|
||
else "",
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": False, "__type__": "update"},
|
||
)
|
||
|
||
|
||
global log_interval
|
||
|
||
|
||
def set_log_interval(exp_dir, batch_size12):
|
||
log_interval = 1
|
||
|
||
folder_path = os.path.join(exp_dir, "1_16k_wavs")
|
||
|
||
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
||
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
|
||
if wav_files:
|
||
sample_size = len(wav_files)
|
||
log_interval = math.ceil(sample_size / batch_size12)
|
||
if log_interval > 1:
|
||
log_interval += 1
|
||
|
||
return log_interval
|
||
|
||
|
||
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
||
def click_train(
|
||
exp_dir1,
|
||
sr2,
|
||
if_f0_3,
|
||
spk_id5,
|
||
save_epoch10,
|
||
total_epoch11,
|
||
batch_size12,
|
||
if_save_latest13,
|
||
pretrained_G14,
|
||
pretrained_D15,
|
||
gpus16,
|
||
if_cache_gpu17,
|
||
if_save_every_weights18,
|
||
version19,
|
||
):
|
||
CSVutil("csvdb/stop.csv", "w+", "formanting", False)
|
||
# 生成filelist
|
||
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||
os.makedirs(exp_dir, exist_ok=True)
|
||
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
||
feature_dir = (
|
||
"%s/3_feature256" % (exp_dir)
|
||
if version19 == "v1"
|
||
else "%s/3_feature768" % (exp_dir)
|
||
)
|
||
|
||
log_interval = set_log_interval(exp_dir, batch_size12)
|
||
|
||
if if_f0_3:
|
||
f0_dir = "%s/2a_f0" % (exp_dir)
|
||
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
||
names = (
|
||
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
||
)
|
||
else:
|
||
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
||
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
||
)
|
||
opt = []
|
||
for name in names:
|
||
if if_f0_3:
|
||
opt.append(
|
||
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
||
% (
|
||
gt_wavs_dir.replace("\\", "\\\\"),
|
||
name,
|
||
feature_dir.replace("\\", "\\\\"),
|
||
name,
|
||
f0_dir.replace("\\", "\\\\"),
|
||
name,
|
||
f0nsf_dir.replace("\\", "\\\\"),
|
||
name,
|
||
spk_id5,
|
||
)
|
||
)
|
||
else:
|
||
opt.append(
|
||
"%s/%s.wav|%s/%s.npy|%s"
|
||
% (
|
||
gt_wavs_dir.replace("\\", "\\\\"),
|
||
name,
|
||
feature_dir.replace("\\", "\\\\"),
|
||
name,
|
||
spk_id5,
|
||
)
|
||
)
|
||
fea_dim = 256 if version19 == "v1" else 768
|
||
if if_f0_3:
|
||
for _ in range(2):
|
||
opt.append(
|
||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
||
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
||
)
|
||
else:
|
||
for _ in range(2):
|
||
opt.append(
|
||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
||
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
||
)
|
||
shuffle(opt)
|
||
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
||
f.write("\n".join(opt))
|
||
print("write filelist done")
|
||
# 生成config#无需生成config
|
||
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
||
print("use gpus:", gpus16)
|
||
if pretrained_G14 == "":
|
||
print("no pretrained Generator")
|
||
if pretrained_D15 == "":
|
||
print("no pretrained Discriminator")
|
||
if gpus16:
|
||
####
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
||
% (
|
||
exp_dir1,
|
||
sr2,
|
||
1 if if_f0_3 else 0,
|
||
batch_size12,
|
||
gpus16,
|
||
total_epoch11,
|
||
save_epoch10,
|
||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
||
1 if if_save_latest13 == True else 0,
|
||
1 if if_cache_gpu17 == True else 0,
|
||
1 if if_save_every_weights18 == True else 0,
|
||
version19,
|
||
log_interval,
|
||
)
|
||
)
|
||
else:
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
|
||
% (
|
||
exp_dir1,
|
||
sr2,
|
||
1 if if_f0_3 else 0,
|
||
batch_size12,
|
||
total_epoch11,
|
||
save_epoch10,
|
||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "\b",
|
||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "\b",
|
||
1 if if_save_latest13 == True else 0,
|
||
1 if if_cache_gpu17 == True else 0,
|
||
1 if if_save_every_weights18 == True else 0,
|
||
version19,
|
||
log_interval,
|
||
)
|
||
)
|
||
print(cmd)
|
||
global p
|
||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||
global PID
|
||
PID = p.pid
|
||
|
||
p.wait()
|
||
return (
|
||
"训练结束, 您可查看控制台训练日志或实验文件夹下的train.log",
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
)
|
||
|
||
|
||
# but4.click(train_index, [exp_dir1], info3)
|
||
def train_index(exp_dir1, version19):
|
||
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||
os.makedirs(exp_dir, exist_ok=True)
|
||
feature_dir = (
|
||
"%s/3_feature256" % (exp_dir)
|
||
if version19 == "v1"
|
||
else "%s/3_feature768" % (exp_dir)
|
||
)
|
||
if not os.path.exists(feature_dir):
|
||
return "请先进行特征提取!"
|
||
listdir_res = list(os.listdir(feature_dir))
|
||
if len(listdir_res) == 0:
|
||
return "请先进行特征提取!"
|
||
infos = []
|
||
npys = []
|
||
for name in sorted(listdir_res):
|
||
phone = np.load("%s/%s" % (feature_dir, name))
|
||
npys.append(phone)
|
||
big_npy = np.concatenate(npys, 0)
|
||
big_npy_idx = np.arange(big_npy.shape[0])
|
||
np.random.shuffle(big_npy_idx)
|
||
big_npy = big_npy[big_npy_idx]
|
||
if big_npy.shape[0] > 2e5:
|
||
# if(1):
|
||
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
||
yield "\n".join(infos)
|
||
try:
|
||
big_npy = (
|
||
MiniBatchKMeans(
|
||
n_clusters=10000,
|
||
verbose=True,
|
||
batch_size=256 * config.n_cpu,
|
||
compute_labels=False,
|
||
init="random",
|
||
)
|
||
.fit(big_npy)
|
||
.cluster_centers_
|
||
)
|
||
except:
|
||
info = traceback.format_exc()
|
||
print(info)
|
||
infos.append(info)
|
||
yield "\n".join(infos)
|
||
|
||
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
||
yield "\n".join(infos)
|
||
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
||
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
||
infos.append("training")
|
||
yield "\n".join(infos)
|
||
index_ivf = faiss.extract_index_ivf(index) #
|
||
index_ivf.nprobe = 1
|
||
index.train(big_npy)
|
||
faiss.write_index(
|
||
index,
|
||
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||
)
|
||
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
||
infos.append("adding")
|
||
yield "\n".join(infos)
|
||
batch_size_add = 8192
|
||
for i in range(0, big_npy.shape[0], batch_size_add):
|
||
index.add(big_npy[i : i + batch_size_add])
|
||
faiss.write_index(
|
||
index,
|
||
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||
)
|
||
infos.append(
|
||
"Successful Index Construction,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
||
)
|
||
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
||
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
||
yield "\n".join(infos)
|
||
|
||
|
||
# def setBoolean(status): #true to false and vice versa / not implemented yet, dont touch!!!!!!!
|
||
# status = not status
|
||
# return status
|
||
|
||
|
||
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
||
def train1key(
|
||
exp_dir1,
|
||
sr2,
|
||
if_f0_3,
|
||
trainset_dir4,
|
||
spk_id5,
|
||
np7,
|
||
f0method8,
|
||
save_epoch10,
|
||
total_epoch11,
|
||
batch_size12,
|
||
if_save_latest13,
|
||
pretrained_G14,
|
||
pretrained_D15,
|
||
gpus16,
|
||
if_cache_gpu17,
|
||
if_save_every_weights18,
|
||
version19,
|
||
echl,
|
||
):
|
||
infos = []
|
||
|
||
def get_info_str(strr):
|
||
infos.append(strr)
|
||
return "\n".join(infos)
|
||
|
||
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
||
preprocess_log_path = "%s/preprocess.log" % model_log_dir
|
||
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
|
||
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
|
||
feature_dir = (
|
||
"%s/3_feature256" % model_log_dir
|
||
if version19 == "v1"
|
||
else "%s/3_feature768" % model_log_dir
|
||
)
|
||
|
||
os.makedirs(model_log_dir, exist_ok=True)
|
||
#########step1:处理数据
|
||
open(preprocess_log_path, "w").close()
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
|
||
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
|
||
+ str(config.noparallel)
|
||
)
|
||
yield get_info_str(i18n("step1:正在处理数据"))
|
||
yield get_info_str(cmd)
|
||
p = Popen(cmd, shell=True)
|
||
p.wait()
|
||
with open(preprocess_log_path, "r") as f:
|
||
print(f.read())
|
||
#########step2a:提取音高
|
||
open(extract_f0_feature_log_path, "w")
|
||
if if_f0_3:
|
||
yield get_info_str("step2a:正在提取音高")
|
||
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
|
||
model_log_dir,
|
||
np7,
|
||
f0method8,
|
||
echl,
|
||
)
|
||
yield get_info_str(cmd)
|
||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||
p.wait()
|
||
with open(extract_f0_feature_log_path, "r") as f:
|
||
print(f.read())
|
||
else:
|
||
yield get_info_str(i18n("step2a:无需提取音高"))
|
||
#######step2b:提取特征
|
||
yield get_info_str(i18n("step2b:正在提取特征"))
|
||
gpus = gpus16.split("-")
|
||
leng = len(gpus)
|
||
ps = []
|
||
for idx, n_g in enumerate(gpus):
|
||
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
|
||
config.device,
|
||
leng,
|
||
idx,
|
||
n_g,
|
||
model_log_dir,
|
||
version19,
|
||
)
|
||
yield get_info_str(cmd)
|
||
p = Popen(
|
||
cmd, shell=True, cwd=now_dir
|
||
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
||
ps.append(p)
|
||
for p in ps:
|
||
p.wait()
|
||
with open(extract_f0_feature_log_path, "r") as f:
|
||
print(f.read())
|
||
#######step3a:训练模型
|
||
yield get_info_str(i18n("step3a:正在训练模型"))
|
||
# 生成filelist
|
||
if if_f0_3:
|
||
f0_dir = "%s/2a_f0" % model_log_dir
|
||
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
|
||
names = (
|
||
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
||
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
||
)
|
||
else:
|
||
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
||
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
||
)
|
||
opt = []
|
||
for name in names:
|
||
if if_f0_3:
|
||
opt.append(
|
||
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
||
% (
|
||
gt_wavs_dir.replace("\\", "\\\\"),
|
||
name,
|
||
feature_dir.replace("\\", "\\\\"),
|
||
name,
|
||
f0_dir.replace("\\", "\\\\"),
|
||
name,
|
||
f0nsf_dir.replace("\\", "\\\\"),
|
||
name,
|
||
spk_id5,
|
||
)
|
||
)
|
||
else:
|
||
opt.append(
|
||
"%s/%s.wav|%s/%s.npy|%s"
|
||
% (
|
||
gt_wavs_dir.replace("\\", "\\\\"),
|
||
name,
|
||
feature_dir.replace("\\", "\\\\"),
|
||
name,
|
||
spk_id5,
|
||
)
|
||
)
|
||
fea_dim = 256 if version19 == "v1" else 768
|
||
if if_f0_3:
|
||
for _ in range(2):
|
||
opt.append(
|
||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
||
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
||
)
|
||
else:
|
||
for _ in range(2):
|
||
opt.append(
|
||
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
||
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
||
)
|
||
shuffle(opt)
|
||
with open("%s/filelist.txt" % model_log_dir, "w") as f:
|
||
f.write("\n".join(opt))
|
||
yield get_info_str("write filelist done")
|
||
if gpus16:
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
||
% (
|
||
exp_dir1,
|
||
sr2,
|
||
1 if if_f0_3 else 0,
|
||
batch_size12,
|
||
gpus16,
|
||
total_epoch11,
|
||
save_epoch10,
|
||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
||
1 if if_save_latest13 == True else 0,
|
||
1 if if_cache_gpu17 == True else 0,
|
||
1 if if_save_every_weights18 == True else 0,
|
||
version19,
|
||
)
|
||
)
|
||
else:
|
||
cmd = (
|
||
config.python_cmd
|
||
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
|
||
% (
|
||
exp_dir1,
|
||
sr2,
|
||
1 if if_f0_3 else 0,
|
||
batch_size12,
|
||
total_epoch11,
|
||
save_epoch10,
|
||
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
||
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
||
1 if if_save_latest13 == True else 0,
|
||
1 if if_cache_gpu17 == True else 0,
|
||
1 if if_save_every_weights18 == True else 0,
|
||
version19,
|
||
)
|
||
)
|
||
yield get_info_str(cmd)
|
||
p = Popen(cmd, shell=True, cwd=now_dir)
|
||
p.wait()
|
||
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
||
#######step3b:训练索引
|
||
npys = []
|
||
listdir_res = list(os.listdir(feature_dir))
|
||
for name in sorted(listdir_res):
|
||
phone = np.load("%s/%s" % (feature_dir, name))
|
||
npys.append(phone)
|
||
big_npy = np.concatenate(npys, 0)
|
||
|
||
big_npy_idx = np.arange(big_npy.shape[0])
|
||
np.random.shuffle(big_npy_idx)
|
||
big_npy = big_npy[big_npy_idx]
|
||
|
||
if big_npy.shape[0] > 2e5:
|
||
# if(1):
|
||
info = "Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0]
|
||
print(info)
|
||
yield get_info_str(info)
|
||
try:
|
||
big_npy = (
|
||
MiniBatchKMeans(
|
||
n_clusters=10000,
|
||
verbose=True,
|
||
batch_size=256 * config.n_cpu,
|
||
compute_labels=False,
|
||
init="random",
|
||
)
|
||
.fit(big_npy)
|
||
.cluster_centers_
|
||
)
|
||
except:
|
||
info = traceback.format_exc()
|
||
print(info)
|
||
yield get_info_str(info)
|
||
|
||
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
|
||
|
||
# n_ivf = big_npy.shape[0] // 39
|
||
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
||
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
|
||
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
||
yield get_info_str("training index")
|
||
index_ivf = faiss.extract_index_ivf(index) #
|
||
index_ivf.nprobe = 1
|
||
index.train(big_npy)
|
||
faiss.write_index(
|
||
index,
|
||
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||
)
|
||
yield get_info_str("adding index")
|
||
batch_size_add = 8192
|
||
for i in range(0, big_npy.shape[0], batch_size_add):
|
||
index.add(big_npy[i : i + batch_size_add])
|
||
faiss.write_index(
|
||
index,
|
||
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
||
)
|
||
yield get_info_str(
|
||
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
||
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
||
)
|
||
yield get_info_str(i18n("全流程结束!"))
|
||
|
||
|
||
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
||
def change_info_(ckpt_path):
|
||
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
||
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
||
try:
|
||
with open(
|
||
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
||
) as f:
|
||
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
||
sr, f0 = info["sample_rate"], info["if_f0"]
|
||
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
||
return sr, str(f0), version
|
||
except:
|
||
traceback.print_exc()
|
||
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
||
|
||
|
||
def export_onnx(ModelPath, ExportedPath):
|
||
cpt = torch.load(ModelPath, map_location="cpu")
|
||
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
|
||
vec_channels = 256 if cpt.get("version", "v1") == "v1" else 768
|
||
|
||
test_phone = torch.rand(1, 200, vec_channels) # hidden unit
|
||
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
|
||
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
|
||
test_pitchf = torch.rand(1, 200) # nsf基频
|
||
test_ds = torch.LongTensor([0]) # 说话人ID
|
||
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
|
||
|
||
device = "cpu" # 导出时设备(不影响使用模型)
|
||
|
||
net_g = SynthesizerTrnMsNSFsidM(
|
||
*cpt["config"], is_half=False, version=cpt.get("version", "v1")
|
||
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
|
||
net_g.load_state_dict(cpt["weight"], strict=False)
|
||
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
|
||
output_names = [
|
||
"audio",
|
||
]
|
||
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
|
||
torch.onnx.export(
|
||
net_g,
|
||
(
|
||
test_phone.to(device),
|
||
test_phone_lengths.to(device),
|
||
test_pitch.to(device),
|
||
test_pitchf.to(device),
|
||
test_ds.to(device),
|
||
test_rnd.to(device),
|
||
),
|
||
ExportedPath,
|
||
dynamic_axes={
|
||
"phone": [1],
|
||
"pitch": [1],
|
||
"pitchf": [1],
|
||
"rnd": [2],
|
||
},
|
||
do_constant_folding=False,
|
||
opset_version=13,
|
||
verbose=False,
|
||
input_names=input_names,
|
||
output_names=output_names,
|
||
)
|
||
return "Finished"
|
||
|
||
|
||
# region Mangio-RVC-Fork CLI App
|
||
import re as regex
|
||
import scipy.io.wavfile as wavfile
|
||
|
||
cli_current_page = "HOME"
|
||
|
||
|
||
def cli_split_command(com):
|
||
exp = r'(?:(?<=\s)|^)"(.*?)"(?=\s|$)|(\S+)'
|
||
split_array = regex.findall(exp, com)
|
||
split_array = [group[0] if group[0] else group[1] for group in split_array]
|
||
return split_array
|
||
|
||
|
||
def execute_generator_function(genObject):
|
||
for _ in genObject:
|
||
pass
|
||
|
||
|
||
def cli_infer(com):
|
||
# get VC first
|
||
com = cli_split_command(com)
|
||
model_name = com[0]
|
||
source_audio_path = com[1]
|
||
output_file_name = com[2]
|
||
feature_index_path = com[3]
|
||
f0_file = None # Not Implemented Yet
|
||
|
||
# Get parameters for inference
|
||
speaker_id = int(com[4])
|
||
transposition = float(com[5])
|
||
f0_method = com[6]
|
||
crepe_hop_length = int(com[7])
|
||
harvest_median_filter = int(com[8])
|
||
resample = int(com[9])
|
||
mix = float(com[10])
|
||
feature_ratio = float(com[11])
|
||
protection_amnt = float(com[12])
|
||
protect1 = 0.5
|
||
|
||
if com[14] == "False" or com[14] == "false":
|
||
DoFormant = False
|
||
Quefrency = 0.0
|
||
Timbre = 0.0
|
||
CSVutil(
|
||
"csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre
|
||
)
|
||
|
||
else:
|
||
DoFormant = True
|
||
Quefrency = float(com[15])
|
||
Timbre = float(com[16])
|
||
CSVutil(
|
||
"csvdb/formanting.csv", "w+", "formanting", DoFormant, Quefrency, Timbre
|
||
)
|
||
|
||
print("Mangio-RVC-Fork Infer-CLI: Starting the inference...")
|
||
vc_data = get_vc(model_name, protection_amnt, protect1)
|
||
print(vc_data)
|
||
print("Mangio-RVC-Fork Infer-CLI: Performing inference...")
|
||
conversion_data = vc_single(
|
||
speaker_id,
|
||
source_audio_path,
|
||
source_audio_path,
|
||
transposition,
|
||
f0_file,
|
||
f0_method,
|
||
feature_index_path,
|
||
feature_index_path,
|
||
feature_ratio,
|
||
harvest_median_filter,
|
||
resample,
|
||
mix,
|
||
protection_amnt,
|
||
crepe_hop_length,
|
||
)
|
||
if "Success." in conversion_data[0]:
|
||
print(
|
||
"Mangio-RVC-Fork Infer-CLI: Inference succeeded. Writing to %s/%s..."
|
||
% ("audio-outputs", output_file_name)
|
||
)
|
||
wavfile.write(
|
||
"%s/%s" % ("audio-outputs", output_file_name),
|
||
conversion_data[1][0],
|
||
conversion_data[1][1],
|
||
)
|
||
print(
|
||
"Mangio-RVC-Fork Infer-CLI: Finished! Saved output to %s/%s"
|
||
% ("audio-outputs", output_file_name)
|
||
)
|
||
else:
|
||
print("Mangio-RVC-Fork Infer-CLI: Inference failed. Here's the traceback: ")
|
||
print(conversion_data[0])
|
||
|
||
|
||
def cli_pre_process(com):
|
||
com = cli_split_command(com)
|
||
model_name = com[0]
|
||
trainset_directory = com[1]
|
||
sample_rate = com[2]
|
||
num_processes = int(com[3])
|
||
|
||
print("Mangio-RVC-Fork Pre-process: Starting...")
|
||
generator = preprocess_dataset(
|
||
trainset_directory, model_name, sample_rate, num_processes
|
||
)
|
||
execute_generator_function(generator)
|
||
print("Mangio-RVC-Fork Pre-process: Finished")
|
||
|
||
|
||
def cli_extract_feature(com):
|
||
com = cli_split_command(com)
|
||
model_name = com[0]
|
||
gpus = com[1]
|
||
num_processes = int(com[2])
|
||
has_pitch_guidance = True if (int(com[3]) == 1) else False
|
||
f0_method = com[4]
|
||
crepe_hop_length = int(com[5])
|
||
version = com[6] # v1 or v2
|
||
|
||
print("Mangio-RVC-CLI: Extract Feature Has Pitch: " + str(has_pitch_guidance))
|
||
print("Mangio-RVC-CLI: Extract Feature Version: " + str(version))
|
||
print("Mangio-RVC-Fork Feature Extraction: Starting...")
|
||
generator = extract_f0_feature(
|
||
gpus,
|
||
num_processes,
|
||
f0_method,
|
||
has_pitch_guidance,
|
||
model_name,
|
||
version,
|
||
crepe_hop_length,
|
||
)
|
||
execute_generator_function(generator)
|
||
print("Mangio-RVC-Fork Feature Extraction: Finished")
|
||
|
||
|
||
def cli_train(com):
|
||
com = cli_split_command(com)
|
||
model_name = com[0]
|
||
sample_rate = com[1]
|
||
has_pitch_guidance = True if (int(com[2]) == 1) else False
|
||
speaker_id = int(com[3])
|
||
save_epoch_iteration = int(com[4])
|
||
total_epoch = int(com[5]) # 10000
|
||
batch_size = int(com[6])
|
||
gpu_card_slot_numbers = com[7]
|
||
if_save_latest = True if (int(com[8]) == 1) else False
|
||
if_cache_gpu = True if (int(com[9]) == 1) else False
|
||
if_save_every_weight = True if (int(com[10]) == 1) else False
|
||
version = com[11]
|
||
|
||
pretrained_base = "pretrained/" if version == "v1" else "pretrained_v2/"
|
||
|
||
g_pretrained_path = "%sf0G%s.pth" % (pretrained_base, sample_rate)
|
||
d_pretrained_path = "%sf0D%s.pth" % (pretrained_base, sample_rate)
|
||
|
||
print("Mangio-RVC-Fork Train-CLI: Training...")
|
||
click_train(
|
||
model_name,
|
||
sample_rate,
|
||
has_pitch_guidance,
|
||
speaker_id,
|
||
save_epoch_iteration,
|
||
total_epoch,
|
||
batch_size,
|
||
if_save_latest,
|
||
g_pretrained_path,
|
||
d_pretrained_path,
|
||
gpu_card_slot_numbers,
|
||
if_cache_gpu,
|
||
if_save_every_weight,
|
||
version,
|
||
)
|
||
|
||
|
||
def cli_train_feature(com):
|
||
com = cli_split_command(com)
|
||
model_name = com[0]
|
||
version = com[1]
|
||
print("Mangio-RVC-Fork Train Feature Index-CLI: Training... Please wait")
|
||
generator = train_index(model_name, version)
|
||
execute_generator_function(generator)
|
||
print("Mangio-RVC-Fork Train Feature Index-CLI: Done!")
|
||
|
||
|
||
def cli_extract_model(com):
|
||
com = cli_split_command(com)
|
||
model_path = com[0]
|
||
save_name = com[1]
|
||
sample_rate = com[2]
|
||
has_pitch_guidance = com[3]
|
||
info = com[4]
|
||
version = com[5]
|
||
extract_small_model_process = extract_small_model(
|
||
model_path, save_name, sample_rate, has_pitch_guidance, info, version
|
||
)
|
||
if extract_small_model_process == "Success.":
|
||
print("Mangio-RVC-Fork Extract Small Model: Success!")
|
||
else:
|
||
print(str(extract_small_model_process))
|
||
print("Mangio-RVC-Fork Extract Small Model: Failed!")
|
||
|
||
|
||
def preset_apply(preset, qfer, tmbr):
|
||
if str(preset) != "":
|
||
with open(str(preset), "r") as p:
|
||
content = p.readlines()
|
||
qfer, tmbr = content[0].split("\n")[0], content[1]
|
||
formant_apply(qfer, tmbr)
|
||
else:
|
||
pass
|
||
return (
|
||
{"value": qfer, "__type__": "update"},
|
||
{"value": tmbr, "__type__": "update"},
|
||
)
|
||
|
||
|
||
def print_page_details():
|
||
if cli_current_page == "HOME":
|
||
print(
|
||
"\n go home : Takes you back to home with a navigation list."
|
||
"\n go infer : Takes you to inference command execution."
|
||
"\n go pre-process : Takes you to training step.1) pre-process command execution."
|
||
"\n go extract-feature : Takes you to training step.2) extract-feature command execution."
|
||
"\n go train : Takes you to training step.3) being or continue training command execution."
|
||
"\n go train-feature : Takes you to the train feature index command execution."
|
||
"\n go extract-model : Takes you to the extract small model command execution."
|
||
)
|
||
elif cli_current_page == "INFER":
|
||
print(
|
||
"\n arg 1) model name with .pth in ./weights: mi-test.pth"
|
||
"\n arg 2) source audio path: myFolder\\MySource.wav"
|
||
"\n arg 3) output file name to be placed in './audio-outputs': MyTest.wav"
|
||
"\n arg 4) feature index file path: logs/mi-test/added_IVF3042_Flat_nprobe_1.index"
|
||
"\n arg 5) speaker id: 0"
|
||
"\n arg 6) transposition: 0"
|
||
"\n arg 7) f0 method: harvest (pm, harvest, crepe, crepe-tiny, hybrid[x,x,x,x], mangio-crepe, mangio-crepe-tiny, rmvpe)"
|
||
"\n arg 8) crepe hop length: 160"
|
||
"\n arg 9) harvest median filter radius: 3 (0-7)"
|
||
"\n arg 10) post resample rate: 0"
|
||
"\n arg 11) mix volume envelope: 1"
|
||
"\n arg 12) feature index ratio: 0.78 (0-1)"
|
||
"\n arg 13) Voiceless Consonant Protection (Less Artifact): 0.33 (Smaller number = more protection. 0.50 means Dont Use.)"
|
||
"\n arg 14) Whether to formant shift the inference audio before conversion: False (if set to false, you can ignore setting the quefrency and timbre values for formanting)"
|
||
"\n arg 15)* Quefrency for formanting: 8.0 (no need to set if arg14 is False/false)"
|
||
"\n arg 16)* Timbre for formanting: 1.2 (no need to set if arg14 is False/false) \n"
|
||
"\nExample: mi-test.pth saudio/Sidney.wav myTest.wav logs/mi-test/added_index.index 0 -2 harvest 160 3 0 1 0.95 0.33 0.45 True 8.0 1.2"
|
||
)
|
||
elif cli_current_page == "PRE-PROCESS":
|
||
print(
|
||
"\n arg 1) Model folder name in ./logs: mi-test"
|
||
"\n arg 2) Trainset directory: mydataset (or) E:\\my-data-set"
|
||
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
|
||
"\n arg 4) Number of CPU threads to use: 8 \n"
|
||
"\nExample: mi-test mydataset 40k 24"
|
||
)
|
||
elif cli_current_page == "EXTRACT-FEATURE":
|
||
print(
|
||
"\n arg 1) Model folder name in ./logs: mi-test"
|
||
"\n arg 2) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
|
||
"\n arg 3) Number of CPU threads to use: 8"
|
||
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
||
"\n arg 5) f0 Method: harvest (pm, harvest, dio, crepe)"
|
||
"\n arg 6) Crepe hop length: 128"
|
||
"\n arg 7) Version for pre-trained models: v2 (use either v1 or v2)\n"
|
||
"\nExample: mi-test 0 24 1 harvest 128 v2"
|
||
)
|
||
elif cli_current_page == "TRAIN":
|
||
print(
|
||
"\n arg 1) Model folder name in ./logs: mi-test"
|
||
"\n arg 2) Sample rate: 40k (32k, 40k, 48k)"
|
||
"\n arg 3) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
||
"\n arg 4) speaker id: 0"
|
||
"\n arg 5) Save epoch iteration: 50"
|
||
"\n arg 6) Total epochs: 10000"
|
||
"\n arg 7) Batch size: 8"
|
||
"\n arg 8) Gpu card slot: 0 (0-1-2 if using 3 GPUs)"
|
||
"\n arg 9) Save only the latest checkpoint: 0 (0 for no, 1 for yes)"
|
||
"\n arg 10) Whether to cache training set to vram: 0 (0 for no, 1 for yes)"
|
||
"\n arg 11) Save extracted small model every generation?: 0 (0 for no, 1 for yes)"
|
||
"\n arg 12) Model architecture version: v2 (use either v1 or v2)\n"
|
||
"\nExample: mi-test 40k 1 0 50 10000 8 0 0 0 0 v2"
|
||
)
|
||
elif cli_current_page == "TRAIN-FEATURE":
|
||
print(
|
||
"\n arg 1) Model folder name in ./logs: mi-test"
|
||
"\n arg 2) Model architecture version: v2 (use either v1 or v2)\n"
|
||
"\nExample: mi-test v2"
|
||
)
|
||
elif cli_current_page == "EXTRACT-MODEL":
|
||
print(
|
||
"\n arg 1) Model Path: logs/mi-test/G_168000.pth"
|
||
"\n arg 2) Model save name: MyModel"
|
||
"\n arg 3) Sample rate: 40k (32k, 40k, 48k)"
|
||
"\n arg 4) Has Pitch Guidance?: 1 (0 for no, 1 for yes)"
|
||
'\n arg 5) Model information: "My Model"'
|
||
"\n arg 6) Model architecture version: v2 (use either v1 or v2)\n"
|
||
'\nExample: logs/mi-test/G_168000.pth MyModel 40k 1 "Created by Cole Mangio" v2'
|
||
)
|
||
|
||
|
||
def change_page(page):
|
||
global cli_current_page
|
||
cli_current_page = page
|
||
return 0
|
||
|
||
|
||
def execute_command(com):
|
||
if com == "go home":
|
||
return change_page("HOME")
|
||
elif com == "go infer":
|
||
return change_page("INFER")
|
||
elif com == "go pre-process":
|
||
return change_page("PRE-PROCESS")
|
||
elif com == "go extract-feature":
|
||
return change_page("EXTRACT-FEATURE")
|
||
elif com == "go train":
|
||
return change_page("TRAIN")
|
||
elif com == "go train-feature":
|
||
return change_page("TRAIN-FEATURE")
|
||
elif com == "go extract-model":
|
||
return change_page("EXTRACT-MODEL")
|
||
else:
|
||
if com[:3] == "go ":
|
||
print("page '%s' does not exist!" % com[3:])
|
||
return 0
|
||
|
||
if cli_current_page == "INFER":
|
||
cli_infer(com)
|
||
elif cli_current_page == "PRE-PROCESS":
|
||
cli_pre_process(com)
|
||
elif cli_current_page == "EXTRACT-FEATURE":
|
||
cli_extract_feature(com)
|
||
elif cli_current_page == "TRAIN":
|
||
cli_train(com)
|
||
elif cli_current_page == "TRAIN-FEATURE":
|
||
cli_train_feature(com)
|
||
elif cli_current_page == "EXTRACT-MODEL":
|
||
cli_extract_model(com)
|
||
|
||
|
||
def cli_navigation_loop():
|
||
while True:
|
||
print("\nYou are currently in '%s':" % cli_current_page)
|
||
print_page_details()
|
||
command = input("%s: " % cli_current_page)
|
||
try:
|
||
execute_command(command)
|
||
except:
|
||
print(traceback.format_exc())
|
||
|
||
|
||
if config.is_cli:
|
||
print("\n\nMangio-RVC-Fork v2 CLI App!\n")
|
||
print(
|
||
"Welcome to the CLI version of RVC. Please read the documentation on https://github.com/Mangio621/Mangio-RVC-Fork (README.MD) to understand how to use this app.\n"
|
||
)
|
||
cli_navigation_loop()
|
||
|
||
# endregion
|
||
|
||
# region RVC WebUI App
|
||
|
||
|
||
def get_presets():
|
||
data = None
|
||
with open("../inference-presets.json", "r") as file:
|
||
data = json.load(file)
|
||
preset_names = []
|
||
for preset in data["presets"]:
|
||
preset_names.append(preset["name"])
|
||
|
||
return preset_names
|
||
|
||
|
||
def stepdisplay(if_save_every_weights):
|
||
return {"visible": if_save_every_weights, "__type__": "update"}
|
||
|
||
|
||
def match_index(sid0):
|
||
picked = False
|
||
# folder = sid0.split('.')[0]
|
||
|
||
# folder = re.split(r'. |_', sid0)[0]
|
||
folder = sid0.split(".")[0].split("_")[0]
|
||
# folder_test = sid0.split('.')[0].split('_')[0].split('-')[0]
|
||
parent_dir = "./logs/" + folder
|
||
# print(parent_dir)
|
||
if os.path.exists(parent_dir):
|
||
# print('path exists')
|
||
for filename in os.listdir(parent_dir.replace("\\", "/")):
|
||
if filename.endswith(".index"):
|
||
for i in range(len(indexes_list)):
|
||
if indexes_list[i] == (
|
||
os.path.join(("./logs/" + folder), filename).replace("\\", "/")
|
||
):
|
||
# print('regular index found')
|
||
break
|
||
else:
|
||
if indexes_list[i] == (
|
||
os.path.join(
|
||
("./logs/" + folder.lower()), filename
|
||
).replace("\\", "/")
|
||
):
|
||
# print('lowered index found')
|
||
parent_dir = "./logs/" + folder.lower()
|
||
break
|
||
# elif (indexes_list[i]).casefold() == ((os.path.join(("./logs/" + folder), filename).replace('\\','/')).casefold()):
|
||
# print('8')
|
||
# parent_dir = "./logs/" + folder.casefold()
|
||
# break
|
||
# elif (indexes_list[i]) == ((os.path.join(("./logs/" + folder_test), filename).replace('\\','/'))):
|
||
# parent_dir = "./logs/" + folder_test
|
||
# print(parent_dir)
|
||
# break
|
||
# elif (indexes_list[i]) == (os.path.join(("./logs/" + folder_test.lower()), filename).replace('\\','/')):
|
||
# parent_dir = "./logs/" + folder_test
|
||
# print(parent_dir)
|
||
# break
|
||
# else:
|
||
# #print('couldnt find index')
|
||
# continue
|
||
|
||
# print('all done')
|
||
index_path = os.path.join(
|
||
parent_dir.replace("\\", "/"), filename.replace("\\", "/")
|
||
).replace("\\", "/")
|
||
# print(index_path)
|
||
return (index_path, index_path)
|
||
|
||
else:
|
||
# print('nothing found')
|
||
return ("", "")
|
||
|
||
|
||
def stoptraining(mim):
|
||
if int(mim) == 1:
|
||
CSVutil("csvdb/stop.csv", "w+", "stop", "True")
|
||
# p.terminate()
|
||
# p.kill()
|
||
try:
|
||
os.kill(PID, signal.SIGTERM)
|
||
except Exception as e:
|
||
print(f"Couldn't click due to {e}")
|
||
pass
|
||
else:
|
||
pass
|
||
|
||
return (
|
||
{"visible": False, "__type__": "update"},
|
||
{"visible": True, "__type__": "update"},
|
||
)
|
||
|
||
|
||
def whethercrepeornah(radio):
|
||
mango = True if radio == "mangio-crepe" or radio == "mangio-crepe-tiny" else False
|
||
|
||
return {"visible": mango, "__type__": "update"}
|
||
|
||
|
||
# Change your Gradio Theme here. 👇 👇 👇 👇 Example: " theme='HaleyCH/HaleyCH_Theme' "
|
||
with gr.Blocks(theme=gr.themes.Soft(), title="Mangio-RVC-Web 💻") as app:
|
||
gr.HTML("<h1> The Mangio-RVC-Fork 💻 </h1>")
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>使用需遵守的协议-LICENSE.txt</b>."
|
||
)
|
||
)
|
||
with gr.Tabs():
|
||
with gr.TabItem(i18n("模型推理")):
|
||
# Inference Preset Row
|
||
# with gr.Row():
|
||
# mangio_preset = gr.Dropdown(label="Inference Preset", choices=sorted(get_presets()))
|
||
# mangio_preset_name_save = gr.Textbox(
|
||
# label="Your preset name"
|
||
# )
|
||
# mangio_preset_save_btn = gr.Button('Save Preset', variant="primary")
|
||
|
||
# Other RVC stuff
|
||
with gr.Row():
|
||
# sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=check_for_name())
|
||
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value="")
|
||
# input_audio_path2
|
||
|
||
refresh_button = gr.Button(
|
||
i18n("Refresh voice list, index path and audio files"),
|
||
variant="primary",
|
||
)
|
||
clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
||
spk_item = gr.Slider(
|
||
minimum=0,
|
||
maximum=2333,
|
||
step=1,
|
||
label=i18n("请选择说话人id"),
|
||
value=0,
|
||
visible=False,
|
||
interactive=True,
|
||
)
|
||
clean_button.click(fn=clean, inputs=[], outputs=[sid0])
|
||
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=i18n("男转女推荐+12key, 女转男推荐-12key, 如果音域爆炸导致音色失真也可以自己调整到合适音域. ")
|
||
)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
vc_transform0 = gr.Number(
|
||
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
||
)
|
||
input_audio0 = gr.Textbox(
|
||
label=i18n(
|
||
"Add audio's name to the path to the audio file to be processed (default is the correct format example) Remove the path to use an audio from the dropdown list:"
|
||
),
|
||
value=os.path.abspath(os.getcwd()).replace("\\", "/")
|
||
+ "/audios/"
|
||
+ "audio.wav",
|
||
)
|
||
input_audio1 = gr.Dropdown(
|
||
label=i18n(
|
||
"Auto detect audio path and select from the dropdown:"
|
||
),
|
||
choices=sorted(audio_paths),
|
||
value="",
|
||
interactive=True,
|
||
)
|
||
input_audio1.change(
|
||
fn=lambda: "", inputs=[], outputs=[input_audio0]
|
||
)
|
||
f0method0 = gr.Radio(
|
||
label=i18n(
|
||
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
||
),
|
||
choices=[
|
||
"pm",
|
||
"harvest",
|
||
"dio",
|
||
"crepe",
|
||
"crepe-tiny",
|
||
"mangio-crepe",
|
||
"mangio-crepe-tiny",
|
||
"rmvpe",
|
||
], # Fork Feature. Add Crepe-Tiny
|
||
value="rmvpe",
|
||
interactive=True,
|
||
)
|
||
crepe_hop_length = gr.Slider(
|
||
minimum=1,
|
||
maximum=512,
|
||
step=1,
|
||
label=i18n("crepe_hop_length"),
|
||
value=120,
|
||
interactive=True,
|
||
visible=False,
|
||
)
|
||
f0method0.change(
|
||
fn=whethercrepeornah,
|
||
inputs=[f0method0],
|
||
outputs=[crepe_hop_length],
|
||
)
|
||
filter_radius0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=7,
|
||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||
value=3,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
file_index1 = gr.Textbox(
|
||
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
||
value="",
|
||
interactive=True,
|
||
)
|
||
|
||
file_index2 = gr.Dropdown(
|
||
label="3. Path to your added.index file (if it didn't automatically find it.)",
|
||
choices=get_indexes(),
|
||
value=get_index(),
|
||
interactive=True,
|
||
allow_custom_value=True,
|
||
)
|
||
# sid0.select(fn=match_index, inputs=sid0, outputs=file_index2)
|
||
|
||
refresh_button.click(
|
||
fn=change_choices,
|
||
inputs=[],
|
||
outputs=[sid0, file_index2, input_audio1],
|
||
)
|
||
# file_big_npy1 = gr.Textbox(
|
||
# label=i18n("特征文件路径"),
|
||
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
||
# interactive=True,
|
||
# )
|
||
index_rate1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("检索特征占比"),
|
||
value=0.75,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
resample_sr0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=48000,
|
||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||
value=0,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
rms_mix_rate0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
||
value=0.25,
|
||
interactive=True,
|
||
)
|
||
protect0 = gr.Slider(
|
||
minimum=0,
|
||
maximum=0.5,
|
||
label=i18n(
|
||
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
||
),
|
||
value=0.33,
|
||
step=0.01,
|
||
interactive=True,
|
||
)
|
||
formanting = gr.Checkbox(
|
||
value=bool(DoFormant),
|
||
label="[EXPERIMENTAL] Formant shift inference audio",
|
||
info="Used for male to female and vice-versa conversions",
|
||
interactive=True,
|
||
visible=True,
|
||
)
|
||
|
||
formant_preset = gr.Dropdown(
|
||
value="",
|
||
choices=get_fshift_presets(),
|
||
label="browse presets for formanting",
|
||
visible=bool(DoFormant),
|
||
)
|
||
|
||
formant_refresh_button = gr.Button(
|
||
value="\U0001f504",
|
||
visible=bool(DoFormant),
|
||
variant="primary",
|
||
)
|
||
|
||
qfrency = gr.Slider(
|
||
value=Quefrency,
|
||
info="Default value is 1.0",
|
||
label="Quefrency for formant shifting",
|
||
minimum=0.0,
|
||
maximum=16.0,
|
||
step=0.1,
|
||
visible=bool(DoFormant),
|
||
interactive=True,
|
||
)
|
||
|
||
tmbre = gr.Slider(
|
||
value=Timbre,
|
||
info="Default value is 1.0",
|
||
label="Timbre for formant shifting",
|
||
minimum=0.0,
|
||
maximum=16.0,
|
||
step=0.1,
|
||
visible=bool(DoFormant),
|
||
interactive=True,
|
||
)
|
||
|
||
formant_preset.change(
|
||
fn=preset_apply,
|
||
inputs=[formant_preset, qfrency, tmbre],
|
||
outputs=[qfrency, tmbre],
|
||
)
|
||
frmntbut = gr.Button(
|
||
"Apply", variant="primary", visible=bool(DoFormant)
|
||
)
|
||
formanting.change(
|
||
fn=formant_enabled,
|
||
inputs=[
|
||
formanting,
|
||
qfrency,
|
||
tmbre,
|
||
frmntbut,
|
||
formant_preset,
|
||
formant_refresh_button,
|
||
],
|
||
outputs=[
|
||
formanting,
|
||
qfrency,
|
||
tmbre,
|
||
frmntbut,
|
||
formant_preset,
|
||
formant_refresh_button,
|
||
],
|
||
)
|
||
frmntbut.click(
|
||
fn=formant_apply,
|
||
inputs=[qfrency, tmbre],
|
||
outputs=[qfrency, tmbre],
|
||
)
|
||
formant_refresh_button.click(
|
||
fn=update_fshift_presets,
|
||
inputs=[formant_preset, qfrency, tmbre],
|
||
outputs=[formant_preset, qfrency, tmbre],
|
||
)
|
||
##formant_refresh_button.click(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[formant_preset, qfrency, tmbre])
|
||
##formant_refresh_button.click(fn=update_fshift_presets, inputs=[formant_preset, qfrency, tmbre], outputs=[formant_preset, qfrency, tmbre])
|
||
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"))
|
||
but0 = gr.Button(i18n("转换"), variant="primary")
|
||
with gr.Row():
|
||
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
||
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
||
but0.click(
|
||
vc_single,
|
||
[
|
||
spk_item,
|
||
input_audio0,
|
||
input_audio1,
|
||
vc_transform0,
|
||
f0_file,
|
||
f0method0,
|
||
file_index1,
|
||
file_index2,
|
||
# file_big_npy1,
|
||
index_rate1,
|
||
filter_radius0,
|
||
resample_sr0,
|
||
rms_mix_rate0,
|
||
protect0,
|
||
crepe_hop_length,
|
||
],
|
||
[vc_output1, vc_output2],
|
||
)
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")
|
||
)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
vc_transform1 = gr.Number(
|
||
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
||
)
|
||
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
||
f0method1 = gr.Radio(
|
||
label=i18n(
|
||
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
|
||
),
|
||
choices=["pm", "harvest", "crepe", "rmvpe"],
|
||
value="rmvpe",
|
||
interactive=True,
|
||
)
|
||
|
||
filter_radius1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=7,
|
||
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
||
value=3,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
file_index3 = gr.Textbox(
|
||
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
||
value="",
|
||
interactive=True,
|
||
)
|
||
file_index4 = gr.Dropdown( # file index dropdown for batch
|
||
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
||
choices=get_indexes(),
|
||
value=get_index(),
|
||
interactive=True,
|
||
)
|
||
sid0.select(
|
||
fn=match_index,
|
||
inputs=[sid0],
|
||
outputs=[file_index2, file_index4],
|
||
)
|
||
refresh_button.click(
|
||
fn=lambda: change_choices()[1],
|
||
inputs=[],
|
||
outputs=file_index4,
|
||
)
|
||
# file_big_npy2 = gr.Textbox(
|
||
# label=i18n("特征文件路径"),
|
||
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
||
# interactive=True,
|
||
# )
|
||
index_rate2 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("检索特征占比"),
|
||
value=1,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
resample_sr1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=48000,
|
||
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
||
value=0,
|
||
step=1,
|
||
interactive=True,
|
||
)
|
||
rms_mix_rate1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
||
value=1,
|
||
interactive=True,
|
||
)
|
||
protect1 = gr.Slider(
|
||
minimum=0,
|
||
maximum=0.5,
|
||
label=i18n(
|
||
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
||
),
|
||
value=0.33,
|
||
step=0.01,
|
||
interactive=True,
|
||
)
|
||
with gr.Column():
|
||
dir_input = gr.Textbox(
|
||
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
||
value=os.path.abspath(os.getcwd()).replace("\\", "/")
|
||
+ "/audios/",
|
||
)
|
||
inputs = gr.File(
|
||
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
||
)
|
||
with gr.Row():
|
||
format1 = gr.Radio(
|
||
label=i18n("导出文件格式"),
|
||
choices=["wav", "flac", "mp3", "m4a"],
|
||
value="flac",
|
||
interactive=True,
|
||
)
|
||
but1 = gr.Button(i18n("转换"), variant="primary")
|
||
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
||
but1.click(
|
||
vc_multi,
|
||
[
|
||
spk_item,
|
||
dir_input,
|
||
opt_input,
|
||
inputs,
|
||
vc_transform1,
|
||
f0method1,
|
||
file_index3,
|
||
file_index4,
|
||
# file_big_npy2,
|
||
index_rate2,
|
||
filter_radius1,
|
||
resample_sr1,
|
||
rms_mix_rate1,
|
||
protect1,
|
||
format1,
|
||
crepe_hop_length,
|
||
],
|
||
[vc_output3],
|
||
)
|
||
sid0.change(
|
||
fn=get_vc,
|
||
inputs=[sid0, protect0, protect1],
|
||
outputs=[spk_item, protect0, protect1],
|
||
)
|
||
with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"人声伴奏分离批量处理, 使用UVR5模型。 <br>"
|
||
"合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>"
|
||
"模型分为三类: <br>"
|
||
"1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>"
|
||
"2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> "
|
||
"3、去混响、去延迟模型(by FoxJoy):<br>"
|
||
" (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br>"
|
||
" (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>"
|
||
"去混响/去延迟,附:<br>"
|
||
"1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>"
|
||
"2、MDX-Net-Dereverb模型挺慢的;<br>"
|
||
"3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
|
||
)
|
||
)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
dir_wav_input = gr.Textbox(
|
||
label=i18n("输入待处理音频文件夹路径"),
|
||
value=((os.getcwd()).replace("\\", "/") + "/audios/"),
|
||
)
|
||
wav_inputs = gr.File(
|
||
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
||
) #####
|
||
with gr.Column():
|
||
model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
|
||
agg = gr.Slider(
|
||
minimum=0,
|
||
maximum=20,
|
||
step=1,
|
||
label="人声提取激进程度",
|
||
value=10,
|
||
interactive=True,
|
||
visible=False, # 先不开放调整
|
||
)
|
||
opt_vocal_root = gr.Textbox(
|
||
label=i18n("指定输出主人声文件夹"), value="opt"
|
||
)
|
||
opt_ins_root = gr.Textbox(
|
||
label=i18n("指定输出非主人声文件夹"), value="opt"
|
||
)
|
||
format0 = gr.Radio(
|
||
label=i18n("导出文件格式"),
|
||
choices=["wav", "flac", "mp3", "m4a"],
|
||
value="flac",
|
||
interactive=True,
|
||
)
|
||
but2 = gr.Button(i18n("转换"), variant="primary")
|
||
vc_output4 = gr.Textbox(label=i18n("输出信息"))
|
||
but2.click(
|
||
uvr,
|
||
[
|
||
model_choose,
|
||
dir_wav_input,
|
||
opt_vocal_root,
|
||
wav_inputs,
|
||
opt_ins_root,
|
||
agg,
|
||
format0,
|
||
],
|
||
[vc_output4],
|
||
)
|
||
with gr.TabItem(i18n("训练")):
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"step1: 填写实验配置. 实验数据放在logs下, 每个实验一个文件夹, 需手工输入实验名路径, 内含实验配置, 日志, 训练得到的模型文件. "
|
||
)
|
||
)
|
||
with gr.Row():
|
||
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="mi-test")
|
||
sr2 = gr.Radio(
|
||
label=i18n("目标采样率"),
|
||
choices=["40k", "48k"],
|
||
value="40k",
|
||
interactive=True,
|
||
)
|
||
if_f0_3 = gr.Checkbox(
|
||
label="Whether the model has pitch guidance.",
|
||
value=True,
|
||
interactive=True,
|
||
)
|
||
version19 = gr.Radio(
|
||
label=i18n("版本"),
|
||
choices=["v1", "v2"],
|
||
value="v1",
|
||
interactive=True,
|
||
visible=True,
|
||
)
|
||
np7 = gr.Slider(
|
||
minimum=0,
|
||
maximum=config.n_cpu,
|
||
step=1,
|
||
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
||
value=int(np.ceil(config.n_cpu / 1.5)),
|
||
interactive=True,
|
||
)
|
||
with gr.Group(): # 暂时单人的, 后面支持最多4人的#数据处理
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"step2a: 自动遍历训练文件夹下所有可解码成音频的文件并进行切片归一化, 在实验目录下生成2个wav文件夹; 暂时只支持单人训练. "
|
||
)
|
||
)
|
||
with gr.Row():
|
||
trainset_dir4 = gr.Textbox(
|
||
label=i18n("输入训练文件夹路径"),
|
||
value=os.path.abspath(os.getcwd()) + "\\datasets\\",
|
||
)
|
||
spk_id5 = gr.Slider(
|
||
minimum=0,
|
||
maximum=4,
|
||
step=1,
|
||
label=i18n("请指定说话人id"),
|
||
value=0,
|
||
interactive=True,
|
||
)
|
||
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
||
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
||
but1.click(
|
||
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
|
||
)
|
||
with gr.Group():
|
||
step2b = gr.Markdown(
|
||
value=i18n("step2b: 使用CPU提取音高(如果模型带音高), 使用GPU提取特征(选择卡号)")
|
||
)
|
||
with gr.Row():
|
||
with gr.Column():
|
||
gpus6 = gr.Textbox(
|
||
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
||
value=gpus,
|
||
interactive=True,
|
||
)
|
||
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
|
||
with gr.Column():
|
||
f0method8 = gr.Radio(
|
||
label=i18n(
|
||
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
|
||
),
|
||
choices=[
|
||
"pm",
|
||
"harvest",
|
||
"dio",
|
||
"crepe",
|
||
"mangio-crepe",
|
||
"rmvpe",
|
||
], # Fork feature: Crepe on f0 extraction for training.
|
||
value="rmvpe",
|
||
interactive=True,
|
||
)
|
||
|
||
extraction_crepe_hop_length = gr.Slider(
|
||
minimum=1,
|
||
maximum=512,
|
||
step=1,
|
||
label=i18n("crepe_hop_length"),
|
||
value=64,
|
||
interactive=True,
|
||
visible=False,
|
||
)
|
||
|
||
f0method8.change(
|
||
fn=whethercrepeornah,
|
||
inputs=[f0method8],
|
||
outputs=[extraction_crepe_hop_length],
|
||
)
|
||
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
||
info2 = gr.Textbox(
|
||
label=i18n("输出信息"), value="", max_lines=8, interactive=False
|
||
)
|
||
but2.click(
|
||
extract_f0_feature,
|
||
[
|
||
gpus6,
|
||
np7,
|
||
f0method8,
|
||
if_f0_3,
|
||
exp_dir1,
|
||
version19,
|
||
extraction_crepe_hop_length,
|
||
],
|
||
[info2],
|
||
)
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
|
||
with gr.Row():
|
||
save_epoch10 = gr.Slider(
|
||
minimum=1,
|
||
maximum=50,
|
||
step=1,
|
||
label=i18n("保存频率save_every_epoch"),
|
||
value=5,
|
||
interactive=True,
|
||
visible=True,
|
||
)
|
||
total_epoch11 = gr.Slider(
|
||
minimum=1,
|
||
maximum=10000,
|
||
step=1,
|
||
label=i18n("总训练轮数total_epoch"),
|
||
value=20,
|
||
interactive=True,
|
||
)
|
||
batch_size12 = gr.Slider(
|
||
minimum=1,
|
||
maximum=40,
|
||
step=1,
|
||
label=i18n("每张显卡的batch_size"),
|
||
value=default_batch_size,
|
||
interactive=True,
|
||
)
|
||
if_save_latest13 = gr.Checkbox(
|
||
label="Whether to save only the latest .ckpt file to save hard drive space",
|
||
value=True,
|
||
interactive=True,
|
||
)
|
||
if_cache_gpu17 = gr.Checkbox(
|
||
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement",
|
||
value=False,
|
||
interactive=True,
|
||
)
|
||
if_save_every_weights18 = gr.Checkbox(
|
||
label="Save a small final model to the 'weights' folder at each save point",
|
||
value=True,
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
pretrained_G14 = gr.Textbox(
|
||
lines=2,
|
||
label=i18n("加载预训练底模G路径"),
|
||
value="pretrained/f0G40k.pth",
|
||
interactive=True,
|
||
)
|
||
pretrained_D15 = gr.Textbox(
|
||
lines=2,
|
||
label=i18n("加载预训练底模D路径"),
|
||
value="pretrained/f0D40k.pth",
|
||
interactive=True,
|
||
)
|
||
sr2.change(
|
||
change_sr2,
|
||
[sr2, if_f0_3, version19],
|
||
[pretrained_G14, pretrained_D15],
|
||
)
|
||
version19.change(
|
||
change_version19,
|
||
[sr2, if_f0_3, version19],
|
||
[pretrained_G14, pretrained_D15, sr2],
|
||
)
|
||
### if f0_3 put here
|
||
if_f0_3.change(
|
||
fn=change_f0,
|
||
inputs=[
|
||
if_f0_3,
|
||
sr2,
|
||
version19,
|
||
step2b,
|
||
gpus6,
|
||
gpu_info9,
|
||
extraction_crepe_hop_length,
|
||
but2,
|
||
info2,
|
||
],
|
||
outputs=[
|
||
f0method8,
|
||
pretrained_G14,
|
||
pretrained_D15,
|
||
step2b,
|
||
gpus6,
|
||
gpu_info9,
|
||
extraction_crepe_hop_length,
|
||
but2,
|
||
info2,
|
||
],
|
||
)
|
||
if_f0_3.change(
|
||
fn=whethercrepeornah,
|
||
inputs=[f0method8],
|
||
outputs=[extraction_crepe_hop_length],
|
||
)
|
||
gpus16 = gr.Textbox(
|
||
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
||
value=gpus,
|
||
interactive=True,
|
||
)
|
||
butstop = gr.Button(
|
||
"Stop Training",
|
||
variant="primary",
|
||
visible=False,
|
||
)
|
||
but3 = gr.Button(i18n("训练模型"), variant="primary", visible=True)
|
||
but3.click(
|
||
fn=stoptraining,
|
||
inputs=[gr.Number(value=0, visible=False)],
|
||
outputs=[but3, butstop],
|
||
)
|
||
butstop.click(
|
||
fn=stoptraining,
|
||
inputs=[gr.Number(value=1, visible=False)],
|
||
outputs=[butstop, but3],
|
||
)
|
||
|
||
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
||
# but5 = gr.Button(i18n("一键训练"), variant="primary")
|
||
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
||
|
||
if_save_every_weights18.change(
|
||
fn=stepdisplay,
|
||
inputs=[if_save_every_weights18],
|
||
outputs=[save_epoch10],
|
||
)
|
||
|
||
but3.click(
|
||
click_train,
|
||
[
|
||
exp_dir1,
|
||
sr2,
|
||
if_f0_3,
|
||
spk_id5,
|
||
save_epoch10,
|
||
total_epoch11,
|
||
batch_size12,
|
||
if_save_latest13,
|
||
pretrained_G14,
|
||
pretrained_D15,
|
||
gpus16,
|
||
if_cache_gpu17,
|
||
if_save_every_weights18,
|
||
version19,
|
||
],
|
||
[info3, butstop, but3],
|
||
)
|
||
|
||
but4.click(train_index, [exp_dir1, version19], info3)
|
||
|
||
# but5.click(
|
||
# train1key,
|
||
# [
|
||
# exp_dir1,
|
||
# sr2,
|
||
# if_f0_3,
|
||
# trainset_dir4,
|
||
# spk_id5,
|
||
# np7,
|
||
# f0method8,
|
||
# save_epoch10,
|
||
# total_epoch11,
|
||
# batch_size12,
|
||
# if_save_latest13,
|
||
# pretrained_G14,
|
||
# pretrained_D15,
|
||
# gpus16,
|
||
# if_cache_gpu17,
|
||
# if_save_every_weights18,
|
||
# version19,
|
||
# extraction_crepe_hop_length
|
||
# ],
|
||
# info3,
|
||
# )
|
||
|
||
with gr.TabItem(i18n("ckpt处理")):
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("模型融合, 可用于测试音色融合"))
|
||
with gr.Row():
|
||
ckpt_a = gr.Textbox(
|
||
label=i18n("A模型路径"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="Path to your model A.",
|
||
)
|
||
ckpt_b = gr.Textbox(
|
||
label=i18n("B模型路径"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="Path to your model B.",
|
||
)
|
||
alpha_a = gr.Slider(
|
||
minimum=0,
|
||
maximum=1,
|
||
label=i18n("A模型权重"),
|
||
value=0.5,
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
sr_ = gr.Radio(
|
||
label=i18n("目标采样率"),
|
||
choices=["40k", "48k"],
|
||
value="40k",
|
||
interactive=True,
|
||
)
|
||
if_f0_ = gr.Checkbox(
|
||
label="Whether the model has pitch guidance.",
|
||
value=True,
|
||
interactive=True,
|
||
)
|
||
info__ = gr.Textbox(
|
||
label=i18n("要置入的模型信息"),
|
||
value="",
|
||
max_lines=8,
|
||
interactive=True,
|
||
placeholder="Model information to be placed.",
|
||
)
|
||
name_to_save0 = gr.Textbox(
|
||
label=i18n("保存的模型名不带后缀"),
|
||
value="",
|
||
placeholder="Name for saving.",
|
||
max_lines=1,
|
||
interactive=True,
|
||
)
|
||
version_2 = gr.Radio(
|
||
label=i18n("模型版本型号"),
|
||
choices=["v1", "v2"],
|
||
value="v1",
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
but6 = gr.Button(i18n("融合"), variant="primary")
|
||
info4 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||
but6.click(
|
||
merge,
|
||
[
|
||
ckpt_a,
|
||
ckpt_b,
|
||
alpha_a,
|
||
sr_,
|
||
if_f0_,
|
||
info__,
|
||
name_to_save0,
|
||
version_2,
|
||
],
|
||
info4,
|
||
) # def merge(path1,path2,alpha1,sr,f0,info):
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("修改模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
||
with gr.Row(): ######
|
||
ckpt_path0 = gr.Textbox(
|
||
label=i18n("模型路径"),
|
||
placeholder="Path to your Model.",
|
||
value="",
|
||
interactive=True,
|
||
)
|
||
info_ = gr.Textbox(
|
||
label=i18n("要改的模型信息"),
|
||
value="",
|
||
max_lines=8,
|
||
interactive=True,
|
||
placeholder="Model information to be changed.",
|
||
)
|
||
name_to_save1 = gr.Textbox(
|
||
label=i18n("保存的文件名, 默认空为和源文件同名"),
|
||
placeholder="Either leave empty or put in the Name of the Model to be saved.",
|
||
value="",
|
||
max_lines=8,
|
||
interactive=True,
|
||
)
|
||
with gr.Row():
|
||
but7 = gr.Button(i18n("修改"), variant="primary")
|
||
info5 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||
but7.click(change_info, [ckpt_path0, info_, name_to_save1], info5)
|
||
with gr.Group():
|
||
gr.Markdown(value=i18n("查看模型信息(仅支持weights文件夹下提取的小模型文件)"))
|
||
with gr.Row():
|
||
ckpt_path1 = gr.Textbox(
|
||
label=i18n("模型路径"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="Model path here.",
|
||
)
|
||
but8 = gr.Button(i18n("查看"), variant="primary")
|
||
info6 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||
but8.click(show_info, [ckpt_path1], info6)
|
||
with gr.Group():
|
||
gr.Markdown(
|
||
value=i18n(
|
||
"模型提取(输入logs文件夹下大文件模型路径),适用于训一半不想训了模型没有自动提取保存小文件模型,或者想测试中间模型的情况"
|
||
)
|
||
)
|
||
with gr.Row():
|
||
ckpt_path2 = gr.Textbox(
|
||
lines=3,
|
||
label=i18n("模型路径"),
|
||
value=os.path.abspath(os.getcwd()).replace("\\", "/")
|
||
+ "/logs/[YOUR_MODEL]/G_23333.pth",
|
||
interactive=True,
|
||
)
|
||
save_name = gr.Textbox(
|
||
label=i18n("保存名"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="Your filename here.",
|
||
)
|
||
sr__ = gr.Radio(
|
||
label=i18n("目标采样率"),
|
||
choices=["32k", "40k", "48k"],
|
||
value="40k",
|
||
interactive=True,
|
||
)
|
||
if_f0__ = gr.Checkbox(
|
||
label="Whether the model has pitch guidance.",
|
||
value=True,
|
||
interactive=True,
|
||
)
|
||
version_1 = gr.Radio(
|
||
label=i18n("模型版本型号"),
|
||
choices=["v1", "v2"],
|
||
value="v2",
|
||
interactive=True,
|
||
)
|
||
info___ = gr.Textbox(
|
||
label=i18n("要置入的模型信息"),
|
||
value="",
|
||
max_lines=8,
|
||
interactive=True,
|
||
placeholder="Model info here.",
|
||
)
|
||
but9 = gr.Button(i18n("提取"), variant="primary")
|
||
info7 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
||
ckpt_path2.change(
|
||
change_info_, [ckpt_path2], [sr__, if_f0__, version_1]
|
||
)
|
||
but9.click(
|
||
extract_small_model,
|
||
[ckpt_path2, save_name, sr__, if_f0__, info___, version_1],
|
||
info7,
|
||
)
|
||
|
||
with gr.TabItem(i18n("Onnx导出")):
|
||
with gr.Row():
|
||
ckpt_dir = gr.Textbox(
|
||
label=i18n("RVC模型路径"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="RVC model path.",
|
||
)
|
||
with gr.Row():
|
||
onnx_dir = gr.Textbox(
|
||
label=i18n("Onnx输出路径"),
|
||
value="",
|
||
interactive=True,
|
||
placeholder="Onnx model output path.",
|
||
)
|
||
with gr.Row():
|
||
infoOnnx = gr.Label(label="info")
|
||
with gr.Row():
|
||
butOnnx = gr.Button(i18n("导出Onnx模型"), variant="primary")
|
||
butOnnx.click(export_onnx, [ckpt_dir, onnx_dir], infoOnnx)
|
||
|
||
tab_faq = i18n("常见问题解答")
|
||
with gr.TabItem(tab_faq):
|
||
try:
|
||
if tab_faq == "常见问题解答":
|
||
with open("docs/faq.md", "r", encoding="utf8") as f:
|
||
info = f.read()
|
||
else:
|
||
with open("docs/faq_en.md", "r", encoding="utf8") as f:
|
||
info = f.read()
|
||
gr.Markdown(value=info)
|
||
except:
|
||
gr.Markdown(traceback.format_exc())
|
||
|
||
# region Mangio Preset Handler Region
|
||
def save_preset(
|
||
preset_name,
|
||
sid0,
|
||
vc_transform,
|
||
input_audio0,
|
||
input_audio1,
|
||
f0method,
|
||
crepe_hop_length,
|
||
filter_radius,
|
||
file_index1,
|
||
file_index2,
|
||
index_rate,
|
||
resample_sr,
|
||
rms_mix_rate,
|
||
protect,
|
||
f0_file,
|
||
):
|
||
data = None
|
||
with open("../inference-presets.json", "r") as file:
|
||
data = json.load(file)
|
||
preset_json = {
|
||
"name": preset_name,
|
||
"model": sid0,
|
||
"transpose": vc_transform,
|
||
"audio_file": input_audio0,
|
||
"auto_audio_file": input_audio1,
|
||
"f0_method": f0method,
|
||
"crepe_hop_length": crepe_hop_length,
|
||
"median_filtering": filter_radius,
|
||
"feature_path": file_index1,
|
||
"auto_feature_path": file_index2,
|
||
"search_feature_ratio": index_rate,
|
||
"resample": resample_sr,
|
||
"volume_envelope": rms_mix_rate,
|
||
"protect_voiceless": protect,
|
||
"f0_file_path": f0_file,
|
||
}
|
||
data["presets"].append(preset_json)
|
||
with open("../inference-presets.json", "w") as file:
|
||
json.dump(data, file)
|
||
file.flush()
|
||
print("Saved Preset %s into inference-presets.json!" % preset_name)
|
||
|
||
def on_preset_changed(preset_name):
|
||
print("Changed Preset to %s!" % preset_name)
|
||
data = None
|
||
with open("../inference-presets.json", "r") as file:
|
||
data = json.load(file)
|
||
|
||
print("Searching for " + preset_name)
|
||
returning_preset = None
|
||
for preset in data["presets"]:
|
||
if preset["name"] == preset_name:
|
||
print("Found a preset")
|
||
returning_preset = preset
|
||
# return all new input values
|
||
return (
|
||
# returning_preset['model'],
|
||
# returning_preset['transpose'],
|
||
# returning_preset['audio_file'],
|
||
# returning_preset['f0_method'],
|
||
# returning_preset['crepe_hop_length'],
|
||
# returning_preset['median_filtering'],
|
||
# returning_preset['feature_path'],
|
||
# returning_preset['auto_feature_path'],
|
||
# returning_preset['search_feature_ratio'],
|
||
# returning_preset['resample'],
|
||
# returning_preset['volume_envelope'],
|
||
# returning_preset['protect_voiceless'],
|
||
# returning_preset['f0_file_path']
|
||
)
|
||
|
||
# Preset State Changes
|
||
|
||
# This click calls save_preset that saves the preset into inference-presets.json with the preset name
|
||
# mangio_preset_save_btn.click(
|
||
# fn=save_preset,
|
||
# inputs=[
|
||
# mangio_preset_name_save,
|
||
# sid0,
|
||
# vc_transform0,
|
||
# input_audio0,
|
||
# f0method0,
|
||
# crepe_hop_length,
|
||
# filter_radius0,
|
||
# file_index1,
|
||
# file_index2,
|
||
# index_rate1,
|
||
# resample_sr0,
|
||
# rms_mix_rate0,
|
||
# protect0,
|
||
# f0_file
|
||
# ],
|
||
# outputs=[]
|
||
# )
|
||
|
||
# mangio_preset.change(
|
||
# on_preset_changed,
|
||
# inputs=[
|
||
# # Pass inputs here
|
||
# mangio_preset
|
||
# ],
|
||
# outputs=[
|
||
# # Pass Outputs here. These refer to the gradio elements that we want to directly change
|
||
# # sid0,
|
||
# # vc_transform0,
|
||
# # input_audio0,
|
||
# # f0method0,
|
||
# # crepe_hop_length,
|
||
# # filter_radius0,
|
||
# # file_index1,
|
||
# # file_index2,
|
||
# # index_rate1,
|
||
# # resample_sr0,
|
||
# # rms_mix_rate0,
|
||
# # protect0,
|
||
# # f0_file
|
||
# ]
|
||
# )
|
||
# endregion
|
||
|
||
# with gr.TabItem(i18n("招募音高曲线前端编辑器")):
|
||
# gr.Markdown(value=i18n("加开发群联系我xxxxx"))
|
||
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")):
|
||
# gr.Markdown(value=i18n("xxxxx"))
|
||
|
||
if (
|
||
config.iscolab or config.paperspace
|
||
): # Share gradio link for colab and paperspace (FORK FEATURE)
|
||
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
||
else:
|
||
app.queue(concurrency_count=511, max_size=1022).launch(
|
||
server_name="0.0.0.0",
|
||
inbrowser=not config.noautoopen,
|
||
server_port=config.listen_port,
|
||
quiet=False,
|
||
)
|
||
|
||
# endregion
|