mirror of
https://github.com/Mangio621/Mangio-RVC-Fork.git
synced 2025-12-29 00:21:16 +01:00
Reformat and rewrite _get_name_params (#57)
* Reformat * rewrite _get_name_params * Add workflow for automatic formatting * Revert "Add workflow for automatic formatting" This reverts commit 9111c5dbc1830248305fb075587a88be07ad3115. * revert Retrieval_based_Voice_Conversion_WebUI.ipynb --------- Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
191
infer_uvr5.py
191
infer_uvr5.py
@@ -1,108 +1,171 @@
|
||||
import os,sys,torch,warnings,pdb
|
||||
import os, sys, torch, warnings, pdb
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
import librosa
|
||||
import importlib
|
||||
import numpy as np
|
||||
import hashlib , math
|
||||
import numpy as np
|
||||
import hashlib, math
|
||||
from tqdm import tqdm
|
||||
from uvr5_pack.lib_v5 import spec_utils
|
||||
from uvr5_pack.utils import _get_name_params,inference
|
||||
from uvr5_pack.utils import _get_name_params, inference
|
||||
from uvr5_pack.lib_v5.model_param_init import ModelParameters
|
||||
from scipy.io import wavfile
|
||||
|
||||
class _audio_pre_():
|
||||
def __init__(self, model_path,device,is_half):
|
||||
|
||||
class _audio_pre_:
|
||||
def __init__(self, model_path, device, is_half):
|
||||
self.model_path = model_path
|
||||
self.device = device
|
||||
self.data = {
|
||||
# Processing Options
|
||||
'postprocess': False,
|
||||
'tta': False,
|
||||
"postprocess": False,
|
||||
"tta": False,
|
||||
# Constants
|
||||
'window_size': 512,
|
||||
'agg': 10,
|
||||
'high_end_process': 'mirroring',
|
||||
"window_size": 512,
|
||||
"agg": 10,
|
||||
"high_end_process": "mirroring",
|
||||
}
|
||||
nn_arch_sizes = [
|
||||
31191, # default
|
||||
33966,61968, 123821, 123812, 537238 # custom
|
||||
31191, # default
|
||||
33966,
|
||||
61968,
|
||||
123821,
|
||||
123812,
|
||||
537238, # custom
|
||||
]
|
||||
self.nn_architecture = list('{}KB'.format(s) for s in nn_arch_sizes)
|
||||
model_size = math.ceil(os.stat(model_path ).st_size / 1024)
|
||||
nn_architecture = '{}KB'.format(min(nn_arch_sizes, key=lambda x:abs(x-model_size)))
|
||||
nets = importlib.import_module('uvr5_pack.lib_v5.nets' + f'_{nn_architecture}'.replace('_{}KB'.format(nn_arch_sizes[0]), ''), package=None)
|
||||
model_hash = hashlib.md5(open(model_path,'rb').read()).hexdigest()
|
||||
param_name ,model_params_d = _get_name_params(model_path , model_hash)
|
||||
self.nn_architecture = list("{}KB".format(s) for s in nn_arch_sizes)
|
||||
model_size = math.ceil(os.stat(model_path).st_size / 1024)
|
||||
nn_architecture = "{}KB".format(
|
||||
min(nn_arch_sizes, key=lambda x: abs(x - model_size))
|
||||
)
|
||||
nets = importlib.import_module(
|
||||
"uvr5_pack.lib_v5.nets"
|
||||
+ f"_{nn_architecture}".replace("_{}KB".format(nn_arch_sizes[0]), ""),
|
||||
package=None,
|
||||
)
|
||||
model_hash = hashlib.md5(open(model_path, "rb").read()).hexdigest()
|
||||
param_name, model_params_d = _get_name_params(model_path, model_hash)
|
||||
|
||||
mp = ModelParameters(model_params_d)
|
||||
model = nets.CascadedASPPNet(mp.param['bins'] * 2)
|
||||
cpk = torch.load( model_path , map_location='cpu')
|
||||
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
||||
cpk = torch.load(model_path, map_location="cpu")
|
||||
model.load_state_dict(cpk)
|
||||
model.eval()
|
||||
if(is_half):model = model.half().to(device)
|
||||
else:model = model.to(device)
|
||||
if is_half:
|
||||
model = model.half().to(device)
|
||||
else:
|
||||
model = model.to(device)
|
||||
|
||||
self.mp = mp
|
||||
self.model = model
|
||||
|
||||
def _path_audio_(self, music_file ,ins_root=None,vocal_root=None):
|
||||
if(ins_root is None and vocal_root is None):return "No save root."
|
||||
name=os.path.basename(music_file)
|
||||
if(ins_root is not None):os.makedirs(ins_root, exist_ok=True)
|
||||
if(vocal_root is not None):os.makedirs(vocal_root , exist_ok=True)
|
||||
def _path_audio_(self, music_file, ins_root=None, vocal_root=None):
|
||||
if ins_root is None and vocal_root is None:
|
||||
return "No save root."
|
||||
name = os.path.basename(music_file)
|
||||
if ins_root is not None:
|
||||
os.makedirs(ins_root, exist_ok=True)
|
||||
if vocal_root is not None:
|
||||
os.makedirs(vocal_root, exist_ok=True)
|
||||
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
||||
bands_n = len(self.mp.param['band'])
|
||||
bands_n = len(self.mp.param["band"])
|
||||
# print(bands_n)
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param['band'][d]
|
||||
if d == bands_n: # high-end band
|
||||
X_wave[d], _ = librosa.core.load(#理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
|
||||
for d in range(bands_n, 0, -1):
|
||||
bp = self.mp.param["band"][d]
|
||||
if d == bands_n: # high-end band
|
||||
(
|
||||
X_wave[d],
|
||||
_,
|
||||
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
||||
music_file,
|
||||
bp["sr"],
|
||||
False,
|
||||
dtype=np.float32,
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
if X_wave[d].ndim == 1:
|
||||
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(X_wave[d+1], self.mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
|
||||
else: # lower bands
|
||||
X_wave[d] = librosa.core.resample(
|
||||
X_wave[d + 1],
|
||||
self.mp.param["band"][d + 1]["sr"],
|
||||
bp["sr"],
|
||||
res_type=bp["res_type"],
|
||||
)
|
||||
# Stft of wave source
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(X_wave[d], bp['hl'], bp['n_fft'], self.mp.param['mid_side'], self.mp.param['mid_side_b2'], self.mp.param['reverse'])
|
||||
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
||||
X_wave[d],
|
||||
bp["hl"],
|
||||
bp["n_fft"],
|
||||
self.mp.param["mid_side"],
|
||||
self.mp.param["mid_side_b2"],
|
||||
self.mp.param["reverse"],
|
||||
)
|
||||
# pdb.set_trace()
|
||||
if d == bands_n and self.data['high_end_process'] != 'none':
|
||||
input_high_end_h = (bp['n_fft']//2 - bp['crop_stop']) + ( self.mp.param['pre_filter_stop'] - self.mp.param['pre_filter_start'])
|
||||
input_high_end = X_spec_s[d][:, bp['n_fft']//2-input_high_end_h:bp['n_fft']//2, :]
|
||||
if d == bands_n and self.data["high_end_process"] != "none":
|
||||
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
||||
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
||||
)
|
||||
input_high_end = X_spec_s[d][
|
||||
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
||||
]
|
||||
|
||||
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
||||
aggresive_set = float(self.data['agg']/100)
|
||||
aggressiveness = {'value': aggresive_set, 'split_bin': self.mp.param['band'][1]['crop_stop']}
|
||||
aggresive_set = float(self.data["agg"] / 100)
|
||||
aggressiveness = {
|
||||
"value": aggresive_set,
|
||||
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
||||
}
|
||||
with torch.no_grad():
|
||||
pred, X_mag, X_phase = inference(X_spec_m,self.device,self.model, aggressiveness,self.data)
|
||||
pred, X_mag, X_phase = inference(
|
||||
X_spec_m, self.device, self.model, aggressiveness, self.data
|
||||
)
|
||||
# Postprocess
|
||||
if self.data['postprocess']:
|
||||
if self.data["postprocess"]:
|
||||
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
||||
pred = spec_utils.mask_silence(pred, pred_inv)
|
||||
y_spec_m = pred * X_phase
|
||||
v_spec_m = X_spec_m - y_spec_m
|
||||
|
||||
if (ins_root is not None):
|
||||
if self.data['high_end_process'].startswith('mirroring'):
|
||||
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], y_spec_m, input_high_end, self.mp)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp,input_high_end_h, input_high_end_)
|
||||
if ins_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
||||
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
||||
print ('%s instruments done'%name)
|
||||
wavfile.write(os.path.join(ins_root, 'instrument_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_instrument)*32768).astype("int16")) #
|
||||
if (vocal_root is not None):
|
||||
if self.data['high_end_process'].startswith('mirroring'):
|
||||
input_high_end_ = spec_utils.mirroring(self.data['high_end_process'], v_spec_m, input_high_end, self.mp)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp, input_high_end_h, input_high_end_)
|
||||
print("%s instruments done" % name)
|
||||
wavfile.write(
|
||||
os.path.join(ins_root, "instrument_{}.wav".format(name)),
|
||||
self.mp.param["sr"],
|
||||
(np.array(wav_instrument) * 32768).astype("int16"),
|
||||
) #
|
||||
if vocal_root is not None:
|
||||
if self.data["high_end_process"].startswith("mirroring"):
|
||||
input_high_end_ = spec_utils.mirroring(
|
||||
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
||||
)
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
||||
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
||||
)
|
||||
else:
|
||||
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
||||
print ('%s vocals done'%name)
|
||||
wavfile.write(os.path.join(vocal_root , 'vocal_{}.wav'.format(name) ), self.mp.param['sr'], (np.array(wav_vocals)*32768).astype("int16"))
|
||||
print("%s vocals done" % name)
|
||||
wavfile.write(
|
||||
os.path.join(vocal_root, "vocal_{}.wav".format(name)),
|
||||
self.mp.param["sr"],
|
||||
(np.array(wav_vocals) * 32768).astype("int16"),
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
device = 'cuda'
|
||||
is_half=True
|
||||
model_path='uvr5_weights/2_HP-UVR.pth'
|
||||
pre_fun = _audio_pre_(model_path=model_path,device=device,is_half=True)
|
||||
audio_path = '神女劈观.aac'
|
||||
save_path = 'opt'
|
||||
pre_fun._path_audio_(audio_path , save_path,save_path)
|
||||
|
||||
if __name__ == "__main__":
|
||||
device = "cuda"
|
||||
is_half = True
|
||||
model_path = "uvr5_weights/2_HP-UVR.pth"
|
||||
pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True)
|
||||
audio_path = "神女劈观.aac"
|
||||
save_path = "opt"
|
||||
pre_fun._path_audio_(audio_path, save_path, save_path)
|
||||
|
||||
Reference in New Issue
Block a user