mirror of
https://github.com/Mangio621/Mangio-RVC-Fork.git
synced 2025-12-29 00:21:16 +01:00
Reformat and rewrite _get_name_params (#57)
* Reformat * rewrite _get_name_params * Add workflow for automatic formatting * Revert "Add workflow for automatic formatting" This reverts commit 9111c5dbc1830248305fb075587a88be07ad3115. * revert Retrieval_based_Voice_Conversion_WebUI.ipynb --------- Co-authored-by: 源文雨 <41315874+fumiama@users.noreply.github.com>
This commit is contained in:
@@ -48,8 +48,10 @@ def slice_segments(x, ids_str, segment_size=4):
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def slice_segments2(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
ret = torch.zeros_like(x[:, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import math,pdb,os
|
||||
import math, pdb, os
|
||||
from time import time as ttime
|
||||
import torch
|
||||
from torch import nn
|
||||
@@ -12,9 +12,20 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer_pack import commons
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
def __init__(
|
||||
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -24,8 +35,8 @@ class TextEncoder256(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@@ -33,12 +44,12 @@ class TextEncoder256(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
@@ -48,8 +59,20 @@ class TextEncoder256(nn.Module):
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder256Sim(nn.Module):
|
||||
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -59,8 +82,8 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@@ -68,17 +91,21 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
return x,x_mask
|
||||
return x, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -126,6 +153,8 @@ class ResidualCouplingBlock(nn.Module):
|
||||
def remove_weight_norm(self):
|
||||
for i in range(self.n_flows):
|
||||
self.flows[i * 2].remove_weight_norm()
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -169,6 +198,8 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -243,8 +274,10 @@ class Generator(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
@@ -259,10 +292,15 @@ class SineGen(torch.nn.Module):
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
@@ -277,8 +315,8 @@ class SineGen(torch.nn.Module):
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0,upp):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
@@ -286,32 +324,52 @@ class SineGen(torch.nn.Module):
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one*=upp
|
||||
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
||||
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
||||
tmp_over_one%=1
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
@@ -328,26 +386,37 @@ class SourceModuleHnNSF(torch.nn.Module):
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half=is_half
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x,upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
||||
if(self.is_half):sine_wavs=sine_wavs.half()
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
if self.is_half:
|
||||
sine_wavs = sine_wavs.half()
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
return sine_merge,None,None# noise, uv
|
||||
return sine_merge, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -360,7 +429,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
is_half=False
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@@ -368,9 +437,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr,
|
||||
harmonic_num=0,
|
||||
is_half=is_half
|
||||
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
||||
)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.conv_pre = Conv1d(
|
||||
@@ -393,9 +460,16 @@ class GeneratorNSF(torch.nn.Module):
|
||||
)
|
||||
)
|
||||
if i + 1 < len(upsample_rates):
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
||||
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
||||
self.noise_convs.append(
|
||||
Conv1d(
|
||||
1,
|
||||
c_cur,
|
||||
kernel_size=stride_f0 * 2,
|
||||
stride=stride_f0,
|
||||
padding=stride_f0 // 2,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||
|
||||
@@ -413,10 +487,10 @@ class GeneratorNSF(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
self.upp=np.prod(upsample_rates)
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, f0,g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
||||
def forward(self, x, f0, g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||
har_source = har_source.transpose(1, 2)
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
@@ -444,11 +518,15 @@ class GeneratorNSF(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
sr2sr={
|
||||
"32k":32000,
|
||||
"40k":40000,
|
||||
"48k":48000,
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -472,10 +550,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
if(type(sr)==type("strr")):
|
||||
sr=sr2sr[sr]
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -493,7 +570,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@@ -511,7 +588,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@@ -526,13 +605,16 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch,pitchf, y, y_lengths,ds):#这里ds是id,[bs,1]
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y, y_lengths, ds
|
||||
): # 这里ds是id,[bs,1]
|
||||
# print(1,pitch.shape)#[bs,t]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
@@ -542,20 +624,20 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
z, y_lengths, self.segment_size
|
||||
)
|
||||
# print(-1,pitchf.shape,ids_slice,self.segment_size,self.hop_length,self.segment_size//self.hop_length)
|
||||
pitchf = commons.slice_segments2(
|
||||
pitchf, ids_slice, self.segment_size
|
||||
)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
# print(-2,pitchf.shape,z_slice.shape)
|
||||
o = self.dec(z_slice,pitchf, g=g)
|
||||
o = self.dec(z_slice, pitchf, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0,sid,max_len=None):
|
||||
def infer(self, phone, phone_lengths, pitch, nsff0, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -579,7 +661,6 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
sr=None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@@ -598,7 +679,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@@ -606,7 +687,8 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,f0=False
|
||||
p_dropout,
|
||||
f0=False,
|
||||
)
|
||||
self.dec = Generator(
|
||||
inter_channels,
|
||||
@@ -616,7 +698,7 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@@ -631,14 +713,14 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, y, y_lengths,ds):#这里ds是id,[bs,1]
|
||||
def forward(self, phone, phone_lengths, y, y_lengths, ds): # 这里ds是id,[bs,1]
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||
@@ -649,13 +731,15 @@ class SynthesizerTrnMs256NSFsid_nono(nn.Module):
|
||||
o = self.dec(z_slice, g=g)
|
||||
return o, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||
|
||||
def infer(self, phone, phone_lengths,sid,max_len=None):
|
||||
def infer(self, phone, phone_lengths, sid, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, None, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * torch.randn_like(m_p) * 0.66666) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len],g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], g=g)
|
||||
return o, x_mask, (z, z_p, m_p, logs_p)
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
@@ -684,7 +768,6 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
use_sdp=True,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@@ -703,7 +786,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256Sim(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@@ -721,20 +804,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, pitchf, y_lengths,ds): # y是spec不需要了现在
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, y_lengths, ds
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
@@ -742,22 +829,24 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
x, y_lengths, self.segment_size
|
||||
)
|
||||
|
||||
pitchf = commons.slice_segments2(
|
||||
pitchf, ids_slice, self.segment_size
|
||||
)
|
||||
pitchf = commons.slice_segments2(pitchf, ids_slice, self.segment_size)
|
||||
o = self.dec(z_slice, pitchf, g=g)
|
||||
return o, ids_slice
|
||||
def infer(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
||||
|
||||
def infer(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
return o, o
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
periods = [2, 3, 5, 7, 11,17]
|
||||
periods = [2, 3, 5, 7, 11, 17]
|
||||
# periods = [3, 5, 7, 11, 17, 23, 37]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
@@ -767,7 +856,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []#
|
||||
y_d_rs = [] #
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
@@ -783,6 +872,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
@@ -812,6 +902,7 @@ class DiscriminatorS(torch.nn.Module):
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
@@ -889,4 +980,3 @@ class DiscriminatorP(torch.nn.Module):
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import math,pdb,os
|
||||
import math, pdb, os
|
||||
from time import time as ttime
|
||||
import torch
|
||||
from torch import nn
|
||||
@@ -12,9 +12,20 @@ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||
from infer_pack.commons import init_weights
|
||||
import numpy as np
|
||||
from infer_pack import commons
|
||||
|
||||
|
||||
class TextEncoder256(nn.Module):
|
||||
def __init__(
|
||||
self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True ):
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -24,8 +35,8 @@ class TextEncoder256(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@@ -33,12 +44,12 @@ class TextEncoder256(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
@@ -48,8 +59,20 @@ class TextEncoder256(nn.Module):
|
||||
|
||||
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||
return m, logs, x_mask
|
||||
|
||||
|
||||
class TextEncoder256Sim(nn.Module):
|
||||
def __init__( self, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout, f0=True):
|
||||
def __init__(
|
||||
self,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
f0=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -59,8 +82,8 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.emb_phone = nn.Linear(256, hidden_channels)
|
||||
self.lrelu=nn.LeakyReLU(0.1,inplace=True)
|
||||
if(f0==True):
|
||||
self.lrelu = nn.LeakyReLU(0.1, inplace=True)
|
||||
if f0 == True:
|
||||
self.emb_pitch = nn.Embedding(256, hidden_channels) # pitch 256
|
||||
self.encoder = attentions.Encoder(
|
||||
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout
|
||||
@@ -68,17 +91,21 @@ class TextEncoder256Sim(nn.Module):
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, phone, pitch, lengths):
|
||||
if(pitch==None):
|
||||
if pitch == None:
|
||||
x = self.emb_phone(phone)
|
||||
else:
|
||||
x = self.emb_phone(phone) + self.emb_pitch(pitch)
|
||||
x = x * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||
x=self.lrelu(x)
|
||||
x = self.lrelu(x)
|
||||
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(x.dtype)
|
||||
x_mask = torch.unsqueeze(commons.sequence_mask(lengths, x.size(2)), 1).to(
|
||||
x.dtype
|
||||
)
|
||||
x = self.encoder(x * x_mask, x_mask)
|
||||
x = self.proj(x) * x_mask
|
||||
return x,x_mask
|
||||
return x, x_mask
|
||||
|
||||
|
||||
class ResidualCouplingBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -126,6 +153,8 @@ class ResidualCouplingBlock(nn.Module):
|
||||
def remove_weight_norm(self):
|
||||
for i in range(self.n_flows):
|
||||
self.flows[i * 2].remove_weight_norm()
|
||||
|
||||
|
||||
class PosteriorEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -169,6 +198,8 @@ class PosteriorEncoder(nn.Module):
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.enc.remove_weight_norm()
|
||||
|
||||
|
||||
class Generator(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -243,8 +274,10 @@ class Generator(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
|
||||
|
||||
class SineGen(torch.nn.Module):
|
||||
""" Definition of sine generator
|
||||
"""Definition of sine generator
|
||||
SineGen(samp_rate, harmonic_num = 0,
|
||||
sine_amp = 0.1, noise_std = 0.003,
|
||||
voiced_threshold = 0,
|
||||
@@ -259,10 +292,15 @@ class SineGen(torch.nn.Module):
|
||||
segment is always sin(np.pi) or cos(0)
|
||||
"""
|
||||
|
||||
def __init__(self, samp_rate, harmonic_num=0,
|
||||
sine_amp=0.1, noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False):
|
||||
def __init__(
|
||||
self,
|
||||
samp_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
noise_std=0.003,
|
||||
voiced_threshold=0,
|
||||
flag_for_pulse=False,
|
||||
):
|
||||
super(SineGen, self).__init__()
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = noise_std
|
||||
@@ -277,8 +315,8 @@ class SineGen(torch.nn.Module):
|
||||
uv = uv * (f0 > self.voiced_threshold)
|
||||
return uv
|
||||
|
||||
def forward(self, f0,upp):
|
||||
""" sine_tensor, uv = forward(f0)
|
||||
def forward(self, f0, upp):
|
||||
"""sine_tensor, uv = forward(f0)
|
||||
input F0: tensor(batchsize=1, length, dim=1)
|
||||
f0 for unvoiced steps should be 0
|
||||
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||
@@ -286,32 +324,52 @@ class SineGen(torch.nn.Module):
|
||||
"""
|
||||
with torch.no_grad():
|
||||
f0 = f0[:, None].transpose(1, 2)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,device=f0.device)
|
||||
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
||||
# fundamental component
|
||||
f0_buf[:, :, 0] = f0[:, :, 0]
|
||||
for idx in np.arange(self.harmonic_num):f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (idx + 2)# idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device)
|
||||
for idx in np.arange(self.harmonic_num):
|
||||
f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
|
||||
idx + 2
|
||||
) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
|
||||
rad_values = (f0_buf / self.sampling_rate) % 1 ###%1意味着n_har的乘积无法后处理优化
|
||||
rand_ini = torch.rand(
|
||||
f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
|
||||
)
|
||||
rand_ini[:, 0] = 0
|
||||
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||
tmp_over_one = torch.cumsum(rad_values, 1)# % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one*=upp
|
||||
tmp_over_one=F.interpolate(tmp_over_one.transpose(2, 1), scale_factor=upp, mode='linear', align_corners=True).transpose(2, 1)
|
||||
rad_values=F.interpolate(rad_values.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)#######
|
||||
tmp_over_one%=1
|
||||
tmp_over_one = torch.cumsum(rad_values, 1) # % 1 #####%1意味着后面的cumsum无法再优化
|
||||
tmp_over_one *= upp
|
||||
tmp_over_one = F.interpolate(
|
||||
tmp_over_one.transpose(2, 1),
|
||||
scale_factor=upp,
|
||||
mode="linear",
|
||||
align_corners=True,
|
||||
).transpose(2, 1)
|
||||
rad_values = F.interpolate(
|
||||
rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(
|
||||
2, 1
|
||||
) #######
|
||||
tmp_over_one %= 1
|
||||
tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
|
||||
cumsum_shift = torch.zeros_like(rad_values)
|
||||
cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
||||
sine_waves = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi)
|
||||
sine_waves = torch.sin(
|
||||
torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
|
||||
)
|
||||
sine_waves = sine_waves * self.sine_amp
|
||||
uv = self._f02uv(f0)
|
||||
uv = F.interpolate(uv.transpose(2, 1), scale_factor=upp, mode='nearest').transpose(2, 1)
|
||||
uv = F.interpolate(
|
||||
uv.transpose(2, 1), scale_factor=upp, mode="nearest"
|
||||
).transpose(2, 1)
|
||||
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||
noise = noise_amp * torch.randn_like(sine_waves)
|
||||
sine_waves = sine_waves * uv + noise
|
||||
return sine_waves, uv, noise
|
||||
|
||||
|
||||
class SourceModuleHnNSF(torch.nn.Module):
|
||||
""" SourceModule for hn-nsf
|
||||
"""SourceModule for hn-nsf
|
||||
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0)
|
||||
sampling_rate: sampling_rate in Hz
|
||||
@@ -328,26 +386,37 @@ class SourceModuleHnNSF(torch.nn.Module):
|
||||
uv (batchsize, length, 1)
|
||||
"""
|
||||
|
||||
def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||
add_noise_std=0.003, voiced_threshod=0,is_half=True):
|
||||
def __init__(
|
||||
self,
|
||||
sampling_rate,
|
||||
harmonic_num=0,
|
||||
sine_amp=0.1,
|
||||
add_noise_std=0.003,
|
||||
voiced_threshod=0,
|
||||
is_half=True,
|
||||
):
|
||||
super(SourceModuleHnNSF, self).__init__()
|
||||
|
||||
self.sine_amp = sine_amp
|
||||
self.noise_std = add_noise_std
|
||||
self.is_half=is_half
|
||||
self.is_half = is_half
|
||||
# to produce sine waveforms
|
||||
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
|
||||
sine_amp, add_noise_std, voiced_threshod)
|
||||
self.l_sin_gen = SineGen(
|
||||
sampling_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
|
||||
)
|
||||
|
||||
# to merge source harmonics into a single excitation
|
||||
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||
self.l_tanh = torch.nn.Tanh()
|
||||
|
||||
def forward(self, x,upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x,upp)
|
||||
if(self.is_half):sine_wavs=sine_wavs.half()
|
||||
def forward(self, x, upp=None):
|
||||
sine_wavs, uv, _ = self.l_sin_gen(x, upp)
|
||||
if self.is_half:
|
||||
sine_wavs = sine_wavs.half()
|
||||
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||
return sine_merge,None,None# noise, uv
|
||||
return sine_merge, None, None # noise, uv
|
||||
|
||||
|
||||
class GeneratorNSF(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -360,7 +429,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
upsample_kernel_sizes,
|
||||
gin_channels,
|
||||
sr,
|
||||
is_half=False
|
||||
is_half=False,
|
||||
):
|
||||
super(GeneratorNSF, self).__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
@@ -368,9 +437,7 @@ class GeneratorNSF(torch.nn.Module):
|
||||
|
||||
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
||||
self.m_source = SourceModuleHnNSF(
|
||||
sampling_rate=sr,
|
||||
harmonic_num=0,
|
||||
is_half=is_half
|
||||
sampling_rate=sr, harmonic_num=0, is_half=is_half
|
||||
)
|
||||
self.noise_convs = nn.ModuleList()
|
||||
self.conv_pre = Conv1d(
|
||||
@@ -393,9 +460,16 @@ class GeneratorNSF(torch.nn.Module):
|
||||
)
|
||||
)
|
||||
if i + 1 < len(upsample_rates):
|
||||
stride_f0 = np.prod(upsample_rates[i + 1:])
|
||||
self.noise_convs.append(Conv1d(
|
||||
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
|
||||
stride_f0 = np.prod(upsample_rates[i + 1 :])
|
||||
self.noise_convs.append(
|
||||
Conv1d(
|
||||
1,
|
||||
c_cur,
|
||||
kernel_size=stride_f0 * 2,
|
||||
stride=stride_f0,
|
||||
padding=stride_f0 // 2,
|
||||
)
|
||||
)
|
||||
else:
|
||||
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
||||
|
||||
@@ -413,10 +487,10 @@ class GeneratorNSF(torch.nn.Module):
|
||||
if gin_channels != 0:
|
||||
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||
|
||||
self.upp=np.prod(upsample_rates)
|
||||
self.upp = np.prod(upsample_rates)
|
||||
|
||||
def forward(self, x, f0,g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0,self.upp)
|
||||
def forward(self, x, f0, g=None):
|
||||
har_source, noi_source, uv = self.m_source(f0, self.upp)
|
||||
har_source = har_source.transpose(1, 2)
|
||||
x = self.conv_pre(x)
|
||||
if g is not None:
|
||||
@@ -444,11 +518,15 @@ class GeneratorNSF(torch.nn.Module):
|
||||
remove_weight_norm(l)
|
||||
for l in self.resblocks:
|
||||
l.remove_weight_norm()
|
||||
sr2sr={
|
||||
"32k":32000,
|
||||
"40k":40000,
|
||||
"48k":48000,
|
||||
|
||||
|
||||
sr2sr = {
|
||||
"32k": 32000,
|
||||
"40k": 40000,
|
||||
"48k": 48000,
|
||||
}
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@@ -472,10 +550,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
sr,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
if(type(sr)==type("strr")):
|
||||
sr=sr2sr[sr]
|
||||
if type(sr) == type("strr"):
|
||||
sr = sr2sr[sr]
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
@@ -493,7 +570,7 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@@ -511,7 +588,9 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels, sr=sr, is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
sr=sr,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
self.enc_q = PosteriorEncoder(
|
||||
spec_channels,
|
||||
@@ -526,21 +605,22 @@ class SynthesizerTrnMs256NSFsid(nn.Module):
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, nsff0 ,sid, rnd, max_len=None):
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, nsff0, sid, rnd, max_len=None):
|
||||
g = self.emb_g(sid).unsqueeze(-1)
|
||||
m_p, logs_p, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
z_p = (m_p + torch.exp(logs_p) * rnd) * x_mask
|
||||
z = self.flow(z_p, x_mask, g=g, reverse=True)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0,g=g)
|
||||
o = self.dec((z * x_mask)[:, :, :max_len], nsff0, g=g)
|
||||
return o
|
||||
|
||||
|
||||
class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
"""
|
||||
Synthesizer for Training
|
||||
@@ -569,7 +649,6 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
use_sdp=True,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
super().__init__()
|
||||
self.spec_channels = spec_channels
|
||||
self.inter_channels = inter_channels
|
||||
@@ -588,7 +667,7 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
self.segment_size = segment_size
|
||||
self.gin_channels = gin_channels
|
||||
# self.hop_length = hop_length#
|
||||
self.spk_embed_dim=spk_embed_dim
|
||||
self.spk_embed_dim = spk_embed_dim
|
||||
self.enc_p = TextEncoder256Sim(
|
||||
inter_channels,
|
||||
hidden_channels,
|
||||
@@ -606,30 +685,35 @@ class SynthesizerTrnMs256NSFsid_sim(nn.Module):
|
||||
upsample_rates,
|
||||
upsample_initial_channel,
|
||||
upsample_kernel_sizes,
|
||||
gin_channels=gin_channels,is_half=kwargs["is_half"]
|
||||
gin_channels=gin_channels,
|
||||
is_half=kwargs["is_half"],
|
||||
)
|
||||
|
||||
self.flow = ResidualCouplingBlock(
|
||||
inter_channels, hidden_channels, 5, 1, 3, gin_channels=gin_channels
|
||||
)
|
||||
self.emb_g = nn.Embedding(self.spk_embed_dim, gin_channels)
|
||||
print("gin_channels:",gin_channels,"self.spk_embed_dim:",self.spk_embed_dim)
|
||||
print("gin_channels:", gin_channels, "self.spk_embed_dim:", self.spk_embed_dim)
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.dec.remove_weight_norm()
|
||||
self.flow.remove_weight_norm()
|
||||
self.enc_q.remove_weight_norm()
|
||||
|
||||
def forward(self, phone, phone_lengths, pitch, pitchf, ds,max_len=None): # y是spec不需要了现在
|
||||
|
||||
def forward(
|
||||
self, phone, phone_lengths, pitch, pitchf, ds, max_len=None
|
||||
): # y是spec不需要了现在
|
||||
g = self.emb_g(ds.unsqueeze(0)).unsqueeze(-1) # [b, 256, 1]##1是t,广播的
|
||||
x, x_mask = self.enc_p(phone, pitch, phone_lengths)
|
||||
x = self.flow(x, x_mask, g=g, reverse=True)
|
||||
o = self.dec((x*x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
o = self.dec((x * x_mask)[:, :, :max_len], pitchf, g=g)
|
||||
return o
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(MultiPeriodDiscriminator, self).__init__()
|
||||
periods = [2, 3, 5, 7, 11,17]
|
||||
periods = [2, 3, 5, 7, 11, 17]
|
||||
# periods = [3, 5, 7, 11, 17, 23, 37]
|
||||
|
||||
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||
@@ -639,7 +723,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
self.discriminators = nn.ModuleList(discs)
|
||||
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []#
|
||||
y_d_rs = [] #
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
@@ -655,6 +739,7 @@ class MultiPeriodDiscriminator(torch.nn.Module):
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(torch.nn.Module):
|
||||
def __init__(self, use_spectral_norm=False):
|
||||
super(DiscriminatorS, self).__init__()
|
||||
@@ -684,6 +769,7 @@ class DiscriminatorS(torch.nn.Module):
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class DiscriminatorP(torch.nn.Module):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||
super(DiscriminatorP, self).__init__()
|
||||
@@ -761,4 +847,3 @@ class DiscriminatorP(torch.nn.Module):
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
@@ -9,66 +9,63 @@ DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {
|
||||
'tails': tails,
|
||||
'tail_bound': tail_bound
|
||||
}
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(
|
||||
inputs[..., None] >= bin_locations,
|
||||
dim=-1
|
||||
) - 1
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails='linear',
|
||||
tail_bound=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == 'linear':
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
@@ -77,45 +74,57 @@ def unconstrained_rational_quadratic_spline(inputs,
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
def rational_quadratic_spline(inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0., right=1., bottom=0., top=1.,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError('Input to a transform is not within its domain')
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin width too large for the number of bins')
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError('Minimal bin height too large for the number of bins')
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
@@ -126,7 +135,7 @@ def rational_quadratic_spline(inputs,
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
@@ -150,15 +159,13 @@ def rational_quadratic_spline(inputs,
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (((inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta)
|
||||
+ input_heights * (input_delta - input_derivatives)))
|
||||
b = (input_heights * input_derivatives
|
||||
- (inputs - input_cumheights) * (input_derivatives
|
||||
+ input_derivatives_plus_one
|
||||
- 2 * input_delta))
|
||||
c = - input_delta * (inputs - input_cumheights)
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
@@ -167,11 +174,15 @@ def rational_quadratic_spline(inputs,
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2))
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
@@ -179,15 +190,20 @@ def rational_quadratic_spline(inputs,
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2)
|
||||
+ input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta)
|
||||
numerator = input_heights * (
|
||||
input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta
|
||||
)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||
* theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2))
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
Reference in New Issue
Block a user