mirror of
https://github.com/Mangio621/Mangio-RVC-Fork.git
synced 2025-12-29 00:21:16 +01:00
Add files via upload
This commit is contained in:
30
infer-web.py
30
infer-web.py
@@ -5,6 +5,16 @@ from subprocess import Popen
|
||||
from time import sleep
|
||||
import torch, os,traceback,sys,warnings,shutil,numpy as np
|
||||
import faiss
|
||||
now_dir=os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
tmp=os.path.join(now_dir,"TEMP")
|
||||
shutil.rmtree(tmp,ignore_errors=True)
|
||||
os.makedirs(tmp,exist_ok=True)
|
||||
os.makedirs(os.path.join(now_dir,"logs"),exist_ok=True)
|
||||
os.makedirs(os.path.join(now_dir,"weights"),exist_ok=True)
|
||||
os.environ["TEMP"]=tmp
|
||||
warnings.filterwarnings("ignore")
|
||||
torch.manual_seed(114514)
|
||||
from webui_locale import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
#判断是否有能用来训练和加速推理的N卡
|
||||
@@ -22,16 +32,6 @@ else:
|
||||
gpu_infos.append("%s\t%s"%(i,gpu_name))
|
||||
gpu_info="\n".join(gpu_infos)if if_gpu_ok==True and len(gpu_infos)>0 else "很遗憾您这没有能用的显卡来支持您训练"
|
||||
gpus="-".join([i[0]for i in gpu_infos])
|
||||
now_dir=os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
tmp=os.path.join(now_dir,"TEMP")
|
||||
shutil.rmtree(tmp,ignore_errors=True)
|
||||
os.makedirs(tmp,exist_ok=True)
|
||||
os.makedirs(os.path.join(now_dir,"logs"),exist_ok=True)
|
||||
os.makedirs(os.path.join(now_dir,"weights"),exist_ok=True)
|
||||
os.environ["TEMP"]=tmp
|
||||
warnings.filterwarnings("ignore")
|
||||
torch.manual_seed(114514)
|
||||
from infer_pack.models import SynthesizerTrnMs256NSFsid, SynthesizerTrnMs256NSFsid_nono
|
||||
from scipy.io import wavfile
|
||||
from fairseq import checkpoint_utils
|
||||
@@ -563,7 +563,7 @@ with gr.Blocks() as app:
|
||||
total_epoch11 = gr.Slider(minimum=0, maximum=1000, step=1, label=i18n("总训练轮数total_epoch"), value=20,interactive=True)
|
||||
batch_size12 = gr.Slider(minimum=0, maximum=32, step=1, label='每张显卡的batch_size', value=4,interactive=True)
|
||||
if_save_latest13 = gr.Radio(label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"), choices=["是", "否"], value="否", interactive=True)
|
||||
if_cache_gpu17 = gr.Radio(label=i18n("是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"), choices=["是", "否"], value="否", interactive=True)
|
||||
if_cache_gpu17 = gr.Radio(label=i18n("是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"), choices=["是", "否"], value="是", interactive=True)
|
||||
with gr.Row():
|
||||
pretrained_G14 = gr.Textbox(label=i18n("加载预训练底模G路径"), value="pretrained/f0G40k.pth",interactive=True)
|
||||
pretrained_D15 = gr.Textbox(label=i18n("加载预训练底模D路径"), value="pretrained/f0D40k.pth",interactive=True)
|
||||
@@ -624,10 +624,10 @@ with gr.Blocks() as app:
|
||||
ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
||||
but9.click(extract_small_model, [ckpt_path2,save_name,sr__,if_f0__,info___], info7)
|
||||
|
||||
with gr.TabItem(i18n("招募音高曲线前端编辑器")):
|
||||
gr.Markdown(value=i18n("加开发群联系我xxxxx"))
|
||||
with gr.TabItem(i18n("点击查看交流、问题反馈群号")):
|
||||
gr.Markdown(value=i18n("xxxxx"))
|
||||
# with gr.TabItem(i18n("招募音高曲线前端编辑器")):
|
||||
# gr.Markdown(value=i18n("加开发群联系我xxxxx"))
|
||||
# with gr.TabItem(i18n("点击查看交流、问题反馈群号")):
|
||||
# gr.Markdown(value=i18n("xxxxx"))
|
||||
|
||||
if iscolab:
|
||||
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
||||
|
||||
Reference in New Issue
Block a user