mirror of
https://github.com/Mangio621/Mangio-RVC-Fork.git
synced 2025-12-29 00:21:16 +01:00
Add files via upload
This commit is contained in:
84
extract_feature_print.py
Normal file
84
extract_feature_print.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import os,sys,traceback
|
||||
n_part=int(sys.argv[1])
|
||||
i_part=int(sys.argv[2])
|
||||
i_gpu=sys.argv[3]
|
||||
exp_dir=sys.argv[4]
|
||||
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import soundfile as sf
|
||||
import numpy as np
|
||||
import joblib
|
||||
from fairseq import checkpoint_utils
|
||||
import pdb
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
f = open("%s/extract_f0_feature.log"%exp_dir, "a+")
|
||||
def printt(strr):
|
||||
print(strr)
|
||||
f.write("%s\n" % strr)
|
||||
f.flush()
|
||||
printt(sys.argv)
|
||||
# model_path = "/bili-coeus/jupyter/jupyterhub-liujing04/speech/pretrain/ContentVec_legacy500.pt"
|
||||
model_path = "hubert_base.pt"
|
||||
|
||||
printt(exp_dir)
|
||||
wavPath = "%s/1_16k_wavs"%exp_dir
|
||||
outPath = "%s/3_feature256"%exp_dir
|
||||
os.makedirs(outPath,exist_ok=True)
|
||||
# wave must be 16k, hop_size=320
|
||||
def readwave(wav_path, normalize=False):
|
||||
wav, sr = sf.read(wav_path)
|
||||
assert sr == 16000
|
||||
feats = torch.from_numpy(wav).float()
|
||||
if feats.dim() == 2: # double channels
|
||||
feats = feats.mean(-1)
|
||||
assert feats.dim() == 1, feats.dim()
|
||||
if normalize:
|
||||
with torch.no_grad():
|
||||
feats = F.layer_norm(feats, feats.shape)
|
||||
feats = feats.view(1, -1)
|
||||
return feats
|
||||
# HuBERT model
|
||||
printt("load model(s) from {}".format(model_path))
|
||||
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
||||
[model_path],
|
||||
suffix="",
|
||||
)
|
||||
model = models[0]
|
||||
model = model.to(device)
|
||||
model = model.half()
|
||||
model.eval()
|
||||
|
||||
todo=sorted(list(os.listdir(wavPath)))[i_part::n_part]
|
||||
n = max(1,len(todo) // 10) # 最多打印十条
|
||||
if(len(todo)==0):printt("no-feature-todo")
|
||||
else:
|
||||
printt("all-feature-%s"%len(todo))
|
||||
for idx,file in enumerate(todo):
|
||||
try:
|
||||
if file.endswith(".wav"):
|
||||
wav_path = "%s/%s"%(wavPath,file)
|
||||
out_path = "%s/%s"%(outPath,file.replace("wav","npy"))
|
||||
|
||||
if(os.path.exists(out_path)):continue
|
||||
|
||||
feats = readwave(wav_path, normalize=saved_cfg.task.normalize)
|
||||
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
||||
inputs = {
|
||||
"source": feats.half().to(device),
|
||||
"padding_mask": padding_mask.to(device),
|
||||
"output_layer": 9, # layer 9
|
||||
}
|
||||
with torch.no_grad():
|
||||
logits = model.extract_features(**inputs)
|
||||
feats = model.final_proj(logits[0])
|
||||
|
||||
feats = feats.squeeze(0).float().cpu().numpy()
|
||||
# feats = np.repeat(feats, 2,0) # 20ms -> 10ms
|
||||
np.save(out_path, feats, allow_pickle=False)
|
||||
if (idx % n == 0):printt("now-%s,all-%s,%s,%s"%(len(todo),idx,file,feats.shape))
|
||||
except:
|
||||
printt(traceback.format_exc())
|
||||
printt("all-feature-done")
|
||||
Reference in New Issue
Block a user