Add files via upload

This commit is contained in:
liujing04
2023-03-31 17:47:00 +08:00
committed by GitHub
parent d3f019120e
commit 09862d29ec
66 changed files with 6653 additions and 0 deletions

Binary file not shown.

Binary file not shown.

170
uvr5_pack/lib_v5/dataset.py Normal file
View File

@@ -0,0 +1,170 @@
import os
import random
import numpy as np
import torch
import torch.utils.data
from tqdm import tqdm
from uvr5_pack.lib_v5 import spec_utils
class VocalRemoverValidationSet(torch.utils.data.Dataset):
def __init__(self, patch_list):
self.patch_list = patch_list
def __len__(self):
return len(self.patch_list)
def __getitem__(self, idx):
path = self.patch_list[idx]
data = np.load(path)
X, y = data['X'], data['y']
X_mag = np.abs(X)
y_mag = np.abs(y)
return X_mag, y_mag
def make_pair(mix_dir, inst_dir):
input_exts = ['.wav', '.m4a', '.mp3', '.mp4', '.flac']
X_list = sorted([
os.path.join(mix_dir, fname)
for fname in os.listdir(mix_dir)
if os.path.splitext(fname)[1] in input_exts])
y_list = sorted([
os.path.join(inst_dir, fname)
for fname in os.listdir(inst_dir)
if os.path.splitext(fname)[1] in input_exts])
filelist = list(zip(X_list, y_list))
return filelist
def train_val_split(dataset_dir, split_mode, val_rate, val_filelist):
if split_mode == 'random':
filelist = make_pair(
os.path.join(dataset_dir, 'mixtures'),
os.path.join(dataset_dir, 'instruments'))
random.shuffle(filelist)
if len(val_filelist) == 0:
val_size = int(len(filelist) * val_rate)
train_filelist = filelist[:-val_size]
val_filelist = filelist[-val_size:]
else:
train_filelist = [
pair for pair in filelist
if list(pair) not in val_filelist]
elif split_mode == 'subdirs':
if len(val_filelist) != 0:
raise ValueError('The `val_filelist` option is not available in `subdirs` mode')
train_filelist = make_pair(
os.path.join(dataset_dir, 'training/mixtures'),
os.path.join(dataset_dir, 'training/instruments'))
val_filelist = make_pair(
os.path.join(dataset_dir, 'validation/mixtures'),
os.path.join(dataset_dir, 'validation/instruments'))
return train_filelist, val_filelist
def augment(X, y, reduction_rate, reduction_mask, mixup_rate, mixup_alpha):
perm = np.random.permutation(len(X))
for i, idx in enumerate(tqdm(perm)):
if np.random.uniform() < reduction_rate:
y[idx] = spec_utils.reduce_vocal_aggressively(X[idx], y[idx], reduction_mask)
if np.random.uniform() < 0.5:
# swap channel
X[idx] = X[idx, ::-1]
y[idx] = y[idx, ::-1]
if np.random.uniform() < 0.02:
# mono
X[idx] = X[idx].mean(axis=0, keepdims=True)
y[idx] = y[idx].mean(axis=0, keepdims=True)
if np.random.uniform() < 0.02:
# inst
X[idx] = y[idx]
if np.random.uniform() < mixup_rate and i < len(perm) - 1:
lam = np.random.beta(mixup_alpha, mixup_alpha)
X[idx] = lam * X[idx] + (1 - lam) * X[perm[i + 1]]
y[idx] = lam * y[idx] + (1 - lam) * y[perm[i + 1]]
return X, y
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - left * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def make_training_set(filelist, cropsize, patches, sr, hop_length, n_fft, offset):
len_dataset = patches * len(filelist)
X_dataset = np.zeros(
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
y_dataset = np.zeros(
(len_dataset, 2, n_fft // 2 + 1, cropsize), dtype=np.complex64)
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
coef = np.max([np.abs(X).max(), np.abs(y).max()])
X, y = X / coef, y / coef
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
starts = np.random.randint(0, X_pad.shape[2] - cropsize, patches)
ends = starts + cropsize
for j in range(patches):
idx = i * patches + j
X_dataset[idx] = X_pad[:, :, starts[j]:ends[j]]
y_dataset[idx] = y_pad[:, :, starts[j]:ends[j]]
return X_dataset, y_dataset
def make_validation_set(filelist, cropsize, sr, hop_length, n_fft, offset):
patch_list = []
patch_dir = 'cs{}_sr{}_hl{}_nf{}_of{}'.format(cropsize, sr, hop_length, n_fft, offset)
os.makedirs(patch_dir, exist_ok=True)
for i, (X_path, y_path) in enumerate(tqdm(filelist)):
basename = os.path.splitext(os.path.basename(X_path))[0]
X, y = spec_utils.cache_or_load(X_path, y_path, sr, hop_length, n_fft)
coef = np.max([np.abs(X).max(), np.abs(y).max()])
X, y = X / coef, y / coef
l, r, roi_size = make_padding(X.shape[2], cropsize, offset)
X_pad = np.pad(X, ((0, 0), (0, 0), (l, r)), mode='constant')
y_pad = np.pad(y, ((0, 0), (0, 0), (l, r)), mode='constant')
len_dataset = int(np.ceil(X.shape[2] / roi_size))
for j in range(len_dataset):
outpath = os.path.join(patch_dir, '{}_p{}.npz'.format(basename, j))
start = j * roi_size
if not os.path.exists(outpath):
np.savez(
outpath,
X=X_pad[:, :, start:start + cropsize],
y=y_pad[:, :, start:start + cropsize])
patch_list.append(outpath)
return VocalRemoverValidationSet(patch_list)

116
uvr5_pack/lib_v5/layers.py Normal file
View File

@@ -0,0 +1,116 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,116 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,116 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 5, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,122 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv6 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv7 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
feat6 = self.conv6(x)
feat7 = self.conv7(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,122 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv6 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv7 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
feat6 = self.conv6(x)
feat7 = self.conv7(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,122 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 16, 32, 64), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv6 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv7 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * 7, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
feat6 = self.conv6(x)
feat7 = self.conv7(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,60 @@
import json
import os
import pathlib
default_param = {}
default_param['bins'] = 768
default_param['unstable_bins'] = 9 # training only
default_param['reduction_bins'] = 762 # training only
default_param['sr'] = 44100
default_param['pre_filter_start'] = 757
default_param['pre_filter_stop'] = 768
default_param['band'] = {}
default_param['band'][1] = {
'sr': 11025,
'hl': 128,
'n_fft': 960,
'crop_start': 0,
'crop_stop': 245,
'lpf_start': 61, # inference only
'res_type': 'polyphase'
}
default_param['band'][2] = {
'sr': 44100,
'hl': 512,
'n_fft': 1536,
'crop_start': 24,
'crop_stop': 547,
'hpf_start': 81, # inference only
'res_type': 'sinc_best'
}
def int_keys(d):
r = {}
for k, v in d:
if k.isdigit():
k = int(k)
r[k] = v
return r
class ModelParameters(object):
def __init__(self, config_path=''):
if '.pth' == pathlib.Path(config_path).suffix:
import zipfile
with zipfile.ZipFile(config_path, 'r') as zip:
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
elif '.json' == pathlib.Path(config_path).suffix:
with open(config_path, 'r') as f:
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
else:
self.param = default_param
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
if not k in self.param:
self.param[k] = False

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 16000,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 16000,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 32000,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "kaiser_fast"
}
},
"sr": 32000,
"pre_filter_start": 1000,
"pre_filter_stop": 1021
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 33075,
"hl": 384,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 33075,
"pre_filter_start": 1000,
"pre_filter_stop": 1021
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 1024,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 256,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 256,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 256,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 256,
"pre_filter_stop": 256
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 700,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 700
}

View File

@@ -0,0 +1,30 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 705,
"band": {
"1": {
"sr": 6000,
"hl": 66,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 240,
"lpf_start": 60,
"lpf_stop": 118,
"res_type": "sinc_fastest"
},
"2": {
"sr": 32000,
"hl": 352,
"n_fft": 1024,
"crop_start": 22,
"crop_stop": 505,
"hpf_start": 44,
"hpf_stop": 23,
"res_type": "sinc_medium"
}
},
"sr": 32000,
"pre_filter_start": 710,
"pre_filter_stop": 731
}

View File

@@ -0,0 +1,30 @@
{
"bins": 512,
"unstable_bins": 7,
"reduction_bins": 510,
"band": {
"1": {
"sr": 11025,
"hl": 160,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 192,
"lpf_start": 41,
"lpf_stop": 139,
"res_type": "sinc_fastest"
},
"2": {
"sr": 44100,
"hl": 640,
"n_fft": 1024,
"crop_start": 10,
"crop_stop": 320,
"hpf_start": 47,
"hpf_stop": 15,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 510,
"pre_filter_stop": 512
}

View File

@@ -0,0 +1,30 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 705,
"band": {
"1": {
"sr": 6000,
"hl": 66,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 240,
"lpf_start": 60,
"lpf_stop": 240,
"res_type": "sinc_fastest"
},
"2": {
"sr": 48000,
"hl": 528,
"n_fft": 1536,
"crop_start": 22,
"crop_stop": 505,
"hpf_start": 82,
"hpf_stop": 22,
"res_type": "sinc_medium"
}
},
"sr": 48000,
"pre_filter_start": 710,
"pre_filter_stop": 731
}

View File

@@ -0,0 +1,42 @@
{
"bins": 768,
"unstable_bins": 5,
"reduction_bins": 733,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 278,
"lpf_start": 28,
"lpf_stop": 140,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 256,
"n_fft": 768,
"crop_start": 14,
"crop_stop": 322,
"hpf_start": 70,
"hpf_stop": 14,
"lpf_start": 283,
"lpf_stop": 314,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 131,
"crop_stop": 313,
"hpf_start": 154,
"hpf_stop": 141,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 757,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,43 @@
{
"mid_side": true,
"bins": 768,
"unstable_bins": 5,
"reduction_bins": 733,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 278,
"lpf_start": 28,
"lpf_stop": 140,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 256,
"n_fft": 768,
"crop_start": 14,
"crop_stop": 322,
"hpf_start": 70,
"hpf_stop": 14,
"lpf_start": 283,
"lpf_stop": 314,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 131,
"crop_stop": 313,
"hpf_start": 154,
"hpf_stop": 141,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 757,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,43 @@
{
"mid_side_b2": true,
"bins": 640,
"unstable_bins": 7,
"reduction_bins": 565,
"band": {
"1": {
"sr": 11025,
"hl": 108,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 187,
"lpf_start": 92,
"lpf_stop": 186,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 216,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 212,
"hpf_start": 68,
"hpf_stop": 34,
"lpf_start": 174,
"lpf_stop": 209,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 432,
"n_fft": 640,
"crop_start": 66,
"crop_stop": 307,
"hpf_start": 86,
"hpf_stop": 72,
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 639,
"pre_filter_stop": 640
}

View File

@@ -0,0 +1,54 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"bins": 768,
"unstable_bins": 7,
"mid_side": true,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"mid_side_b": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"mid_side_b": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"reverse": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"stereo_w": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,54 @@
{
"bins": 672,
"unstable_bins": 8,
"reduction_bins": 637,
"band": {
"1": {
"sr": 7350,
"hl": 80,
"n_fft": 640,
"crop_start": 0,
"crop_stop": 85,
"lpf_start": 25,
"lpf_stop": 53,
"res_type": "polyphase"
},
"2": {
"sr": 7350,
"hl": 80,
"n_fft": 320,
"crop_start": 4,
"crop_stop": 87,
"hpf_start": 25,
"hpf_stop": 12,
"lpf_start": 31,
"lpf_stop": 62,
"res_type": "polyphase"
},
"3": {
"sr": 14700,
"hl": 160,
"n_fft": 512,
"crop_start": 17,
"crop_stop": 216,
"hpf_start": 48,
"hpf_stop": 24,
"lpf_start": 139,
"lpf_stop": 210,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 480,
"n_fft": 960,
"crop_start": 78,
"crop_stop": 383,
"hpf_start": 130,
"hpf_stop": 86,
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 668,
"pre_filter_stop": 672
}

View File

@@ -0,0 +1,55 @@
{
"bins": 672,
"unstable_bins": 8,
"reduction_bins": 637,
"band": {
"1": {
"sr": 7350,
"hl": 80,
"n_fft": 640,
"crop_start": 0,
"crop_stop": 85,
"lpf_start": 25,
"lpf_stop": 53,
"res_type": "polyphase"
},
"2": {
"sr": 7350,
"hl": 80,
"n_fft": 320,
"crop_start": 4,
"crop_stop": 87,
"hpf_start": 25,
"hpf_stop": 12,
"lpf_start": 31,
"lpf_stop": 62,
"res_type": "polyphase"
},
"3": {
"sr": 14700,
"hl": 160,
"n_fft": 512,
"crop_start": 17,
"crop_stop": 216,
"hpf_start": 48,
"hpf_stop": 24,
"lpf_start": 139,
"lpf_stop": 210,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 480,
"n_fft": 960,
"crop_start": 78,
"crop_stop": 383,
"hpf_start": 130,
"hpf_stop": 86,
"convert_channels": "stereo_n",
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 668,
"pre_filter_stop": 672
}

View File

@@ -0,0 +1,43 @@
{
"mid_side_b2": true,
"bins": 1280,
"unstable_bins": 7,
"reduction_bins": 565,
"band": {
"1": {
"sr": 11025,
"hl": 108,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 374,
"lpf_start": 92,
"lpf_stop": 186,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 216,
"n_fft": 1536,
"crop_start": 0,
"crop_stop": 424,
"hpf_start": 68,
"hpf_stop": 34,
"lpf_start": 348,
"lpf_stop": 418,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 432,
"n_fft": 1280,
"crop_start": 132,
"crop_stop": 614,
"hpf_start": 172,
"hpf_stop": 144,
"res_type": "polyphase"
}
},
"sr": 44100,
"pre_filter_start": 1280,
"pre_filter_stop": 1280
}

113
uvr5_pack/lib_v5/nets.py Normal file
View File

@@ -0,0 +1,113 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers
from uvr5_pack.lib_v5 import spec_utils
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 16)
self.stg1_high_band_net = BaseASPPNet(2, 16)
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(8, 16)
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(16, 32)
self.out = nn.Conv2d(32, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,112 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_123821KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 32)
self.stg1_high_band_net = BaseASPPNet(2, 32)
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(16, 32)
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(32, 64)
self.out = nn.Conv2d(64, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,112 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_123821KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 32)
self.stg1_high_band_net = BaseASPPNet(2, 32)
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(16, 32)
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(32, 64)
self.out = nn.Conv2d(64, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,112 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_33966KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16, 32)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 16)
self.stg1_high_band_net = BaseASPPNet(2, 16)
self.stg2_bridge = layers.Conv2DBNActiv(18, 8, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(8, 16)
self.stg3_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(16, 32)
self.out = nn.Conv2d(32, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(16, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(16, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,113 @@
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_537238KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 64)
self.stg1_high_band_net = BaseASPPNet(2, 64)
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(32, 64)
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(64, 128)
self.out = nn.Conv2d(128, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,113 @@
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_537238KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 64)
self.stg1_high_band_net = BaseASPPNet(2, 64)
self.stg2_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(32, 64)
self.stg3_bridge = layers.Conv2DBNActiv(130, 64, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(64, 128)
self.out = nn.Conv2d(128, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(64, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(64, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,112 @@
import torch
from torch import nn
import torch.nn.functional as F
from uvr5_pack.lib_v5 import layers_123821KB as layers
class BaseASPPNet(nn.Module):
def __init__(self, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(2, 32)
self.stg1_high_band_net = BaseASPPNet(2, 32)
self.stg2_bridge = layers.Conv2DBNActiv(34, 16, 1, 1, 0)
self.stg2_full_band_net = BaseASPPNet(16, 32)
self.stg3_bridge = layers.Conv2DBNActiv(66, 32, 1, 1, 0)
self.stg3_full_band_net = BaseASPPNet(32, 64)
self.out = nn.Conv2d(64, 2, 1, bias=False)
self.aux1_out = nn.Conv2d(32, 2, 1, bias=False)
self.aux2_out = nn.Conv2d(32, 2, 1, bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,485 @@
import os,librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm
import json,math ,hashlib
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
# e_freq = s_freq + h1_shape[2]
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
import threading
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
def run_thread(**kwargs):
global spec_left
spec_left = librosa.stft(**kwargs)
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
thread.start()
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
thread.join()
spec = np.asfortranarray([spec_left, spec_right])
return spec
def combine_spectrograms(specs, mp):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param['band'])
for d in range(1, bands_n + 1):
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
offset += h
if offset > mp.param['bins']:
raise ValueError('Too much bins')
# lowpass fiter
if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
if bands_n == 1:
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
gp = 1
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def spectrogram_to_image(spec, mode='magnitude'):
if mode == 'magnitude':
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y ** 2 + 1e-8)
elif mode == 'phase':
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([
np.max(img, axis=2, keepdims=True), img
], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.j * np.angle(y))
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_area * 2')
mag = mag.copy()
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
uninformative = np.where(ends - starts > min_range)[0]
if len(uninformative) > 0:
starts = starts[uninformative]
ends = ends[uninformative]
old_e = None
for s, e in zip(starts, ends):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight = np.linspace(0, 1, fade_size)
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
else:
s -= fade_size
if e != mag.shape[2]:
weight = np.linspace(1, 0, fade_size)
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
else:
e += fade_size
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
old_e = e
return mag
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l,:l], b[:l,:l]
def cache_or_load(mix_path, inst_path, mp):
mix_basename = os.path.splitext(os.path.basename(mix_path))[0]
inst_basename = os.path.splitext(os.path.basename(inst_path))[0]
cache_dir = 'mph{}'.format(hashlib.sha1(json.dumps(mp.param, sort_keys=True).encode('utf-8')).hexdigest())
mix_cache_dir = os.path.join('cache', cache_dir)
inst_cache_dir = os.path.join('cache', cache_dir)
os.makedirs(mix_cache_dir, exist_ok=True)
os.makedirs(inst_cache_dir, exist_ok=True)
mix_cache_path = os.path.join(mix_cache_dir, mix_basename + '.npy')
inst_cache_path = os.path.join(inst_cache_dir, inst_basename + '.npy')
if os.path.exists(mix_cache_path) and os.path.exists(inst_cache_path):
X_spec_m = np.load(mix_cache_path)
y_spec_m = np.load(inst_cache_path)
else:
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
X_wave[d], _ = librosa.load(
mix_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
y_wave[d], _ = librosa.load(
inst_path, bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
else: # lower bands
X_wave[d] = librosa.resample(X_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
y_wave[d] = librosa.resample(y_wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
X_wave[d], y_wave[d] = align_wave_head_and_tail(X_wave[d], y_wave[d])
X_spec_s[d] = wave_to_spectrogram(X_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
y_spec_s[d] = wave_to_spectrogram(y_wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
del X_wave, y_wave
X_spec_m = combine_spectrograms(X_spec_s, mp)
y_spec_m = combine_spectrograms(y_spec_s, mp)
if X_spec_m.shape != y_spec_m.shape:
raise ValueError('The combined spectrograms are different: ' + mix_path)
_, ext = os.path.splitext(mix_path)
np.save(mix_cache_path, X_spec_m)
np.save(inst_cache_path, y_spec_m)
return X_spec_m, y_spec_m
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mid_side_b2:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
else:
return np.asfortranarray([wave_left, wave_right])
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
import threading
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
def run_thread(**kwargs):
global wave_left
wave_left = librosa.istft(**kwargs)
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
thread.start()
wave_right = librosa.istft(spec_right, hop_length=hop_length)
thread.join()
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mid_side_b2:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
else:
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
wave_band = {}
bands_n = len(mp.param['band'])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param['band'][d]
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp['crop_stop'] - bp['crop_start']
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
offset += h
if d == bands_n: # higher
if extra_bins_h: # if --high_end_process bypass
max_bin = bp['n_fft'] // 2
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp['hpf_start'] > 0:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
if bands_n == 1:
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
else:
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
else:
sr = mp.param['band'][d+1]['sr']
if d == 1: # lower
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
else: # mid
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
# wave = librosa.core.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
wave = librosa.core.resample(wave2, bp['sr'], sr,res_type='scipy')
return wave.T
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0:bin_stop+1, :] *= 0
return spec
def mirroring(a, spec_m, input_high_end, mp):
if 'mirroring' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if 'mirroring2' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def ensembling(a, specs):
for i in range(1, len(specs)):
if i == 1:
spec = specs[0]
ln = min([spec.shape[2], specs[i].shape[2]])
spec = spec[:,:,:ln]
specs[i] = specs[i][:,:,:ln]
if 'min_mag' == a:
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
if 'max_mag' == a:
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
return spec
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
if __name__ == "__main__":
import cv2
import sys
import time
import argparse
from model_param_init import ModelParameters
p = argparse.ArgumentParser()
p.add_argument('--algorithm', '-a', type=str, choices=['invert', 'invert_p', 'min_mag', 'max_mag', 'deep', 'align'], default='min_mag')
p.add_argument('--model_params', '-m', type=str, default=os.path.join('modelparams', '1band_sr44100_hl512.json'))
p.add_argument('--output_name', '-o', type=str, default='output')
p.add_argument('--vocals_only', '-v', action='store_true')
p.add_argument('input', nargs='+')
args = p.parse_args()
start_time = time.time()
if args.algorithm.startswith('invert') and len(args.input) != 2:
raise ValueError('There should be two input files.')
if not args.algorithm.startswith('invert') and len(args.input) < 2:
raise ValueError('There must be at least two input files.')
wave, specs = {}, {}
mp = ModelParameters(args.model_params)
for i in range(len(args.input)):
spec = {}
for d in range(len(mp.param['band']), 0, -1):
bp = mp.param['band'][d]
if d == len(mp.param['band']): # high-end band
wave[d], _ = librosa.load(
args.input[i], bp['sr'], False, dtype=np.float32, res_type=bp['res_type'])
if len(wave[d].shape) == 1: # mono to stereo
wave[d] = np.array([wave[d], wave[d]])
else: # lower bands
wave[d] = librosa.resample(wave[d+1], mp.param['band'][d+1]['sr'], bp['sr'], res_type=bp['res_type'])
spec[d] = wave_to_spectrogram(wave[d], bp['hl'], bp['n_fft'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
specs[i] = combine_spectrograms(spec, mp)
del wave
if args.algorithm == 'deep':
d_spec = np.where(np.abs(specs[0]) <= np.abs(spec[1]), specs[0], spec[1])
v_spec = d_spec - specs[1]
sf.write(os.path.join('{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
if args.algorithm.startswith('invert'):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if 'invert_p' == args.algorithm:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
if not args.vocals_only:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
v_mag = np.abs(v_spec)
X_image = spectrogram_to_image(X_mag)
y_image = spectrogram_to_image(y_mag)
v_image = spectrogram_to_image(v_mag)
cv2.imwrite('{}_X.png'.format(args.output_name), X_image)
cv2.imwrite('{}_y.png'.format(args.output_name), y_image)
cv2.imwrite('{}_v.png'.format(args.output_name), v_image)
sf.write('{}_X.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[0], mp), mp.param['sr'])
sf.write('{}_y.wav'.format(args.output_name), cmb_spectrogram_to_wave(specs[1], mp), mp.param['sr'])
sf.write('{}_v.wav'.format(args.output_name), cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
else:
if not args.algorithm == 'deep':
sf.write(os.path.join('ensembled','{}.wav'.format(args.output_name)), cmb_spectrogram_to_wave(ensembling(args.algorithm, specs), mp), mp.param['sr'])
if args.algorithm == 'align':
trackalignment = [
{
'file1':'"{}"'.format(args.input[0]),
'file2':'"{}"'.format(args.input[1])
}
]
for i,e in tqdm(enumerate(trackalignment), desc="Performing Alignment..."):
os.system(f"python lib/align_tracks.py {e['file1']} {e['file2']}")
#print('Total time: {0:.{1}f}s'.format(time.time() - start_time, 1))

242
uvr5_pack/utils.py Normal file
View File

@@ -0,0 +1,242 @@
import torch
import numpy as np
from tqdm import tqdm
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - left * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def inference(X_spec, device, model, aggressiveness,data):
'''
data dic configs
'''
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness,is_half=True):
model.eval()
with torch.no_grad():
preds = []
iterations = [n_window]
total_iterations = sum(iterations)
for i in tqdm(range(n_window)):
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window)
if(is_half==True):X_mag_window=X_mag_window.half()
X_mag_window=X_mag_window.to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
X_mag, X_phase = preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = make_padding(n_frame,
data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
if(list(model.state_dict().values())[0].dtype==torch.float16):is_half=True
else:is_half=False
pred = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness,is_half)
pred = pred[:, :, :n_frame]
if data['tta']:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = _execute(X_mag_pad, roi_size, n_window,
device, model, aggressiveness,is_half)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
return pred * coef, X_mag, np.exp(1.j * X_phase)
def _get_name_params(model_path , model_hash):
ModelName = model_path
if model_hash == '47939caf0cfe52a0e81442b85b971dfd':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '4e4ecb9764c50a8c414fee6e10395bbe':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
param_name_auto=str('4band_v2')
if model_hash == 'ca106edd563e034bde0bdec4bb7a4b36':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
param_name_auto=str('4band_v2')
if model_hash == 'e60a1e84803ce4efc0a6551206cc4b71':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == 'a82f14e75892e55e994376edbf0c8435':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '6dd9eaa6f0420af9f1d403aaafa4cc06':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
param_name_auto=str('4band_v2_sn')
if model_hash == '08611fb99bd59eaa79ad27c58d137727':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
param_name_auto=str('4band_v2_sn')
if model_hash == '5c7bbca45a187e81abbbd351606164e5':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
if model_hash == 'd6b2cb685a058a091e5e7098192d3233':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
if model_hash == 'c1b9f38170a7c90e96f027992eb7c62b':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == 'c3448ec923fa0edf3d03a19e633faa53':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if model_hash == '68aa2c8093d0080704b200d140f59e54':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100.json')
param_name_auto=str('3band_44100.json')
if model_hash == 'fdc83be5b798e4bd29fe00fe6600e147':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid.json')
if model_hash == '2ce34bc92fd57f55db16b7a4def3d745':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid.json')
if model_hash == '52fdca89576f06cf4340b74a4730ee5f':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100.json')
if model_hash == '41191165b05d38fc77f072fa9e8e8a30':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100.json')
if model_hash == '89e83b511ad474592689e562d5b1f80e':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000.json')
if model_hash == '0b954da81d453b716b114d6d7c95177f':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000.json')
#v4 Models
if model_hash == '6a00461c51c2920fd68937d4609ed6c8':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
param_name_auto=str('1band_sr16000_hl512')
if model_hash == '0ab504864d20f1bd378fe9c81ef37140':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == '7dd21065bf91c10f7fccb57d7d83b07f':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == '80ab74d65e515caa3622728d2de07d23':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if model_hash == 'edc115e7fc523245062200c00caa847f':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if model_hash == '28063e9f6ab5b341c5f6d3c67f2045b7':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if model_hash == 'b58090534c52cbc3e9b5104bad666ef2':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if model_hash == '0cdab9947f1b0928705f518f3c78ea8f':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if model_hash == 'ae702fed0238afb5346db8356fe25f13':
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
param_name_auto=str('1band_sr44100_hl1024')
#User Models
#1 Band
if '1band_sr16000_hl512' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr16000_hl512.json')
param_name_auto=str('1band_sr16000_hl512')
if '1band_sr32000_hl512' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr32000_hl512.json')
param_name_auto=str('1band_sr32000_hl512')
if '1band_sr33075_hl384' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr33075_hl384.json')
param_name_auto=str('1band_sr33075_hl384')
if '1band_sr44100_hl256' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl256.json')
param_name_auto=str('1band_sr44100_hl256')
if '1band_sr44100_hl512' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl512.json')
param_name_auto=str('1band_sr44100_hl512')
if '1band_sr44100_hl1024' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/1band_sr44100_hl1024.json')
param_name_auto=str('1band_sr44100_hl1024')
#2 Band
if '2band_44100_lofi' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_44100_lofi.json')
param_name_auto=str('2band_44100_lofi')
if '2band_32000' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_32000.json')
param_name_auto=str('2band_32000')
if '2band_48000' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/2band_48000.json')
param_name_auto=str('2band_48000')
#3 Band
if '3band_44100' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100.json')
param_name_auto=str('3band_44100')
if '3band_44100_mid' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_mid.json')
param_name_auto=str('3band_44100_mid')
if '3band_44100_msb2' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/3band_44100_msb2.json')
param_name_auto=str('3band_44100_msb2')
#4 Band
if '4band_44100' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100.json')
param_name_auto=str('4band_44100')
if '4band_44100_mid' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_mid.json')
param_name_auto=str('4band_44100_mid')
if '4band_44100_msb' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_msb.json')
param_name_auto=str('4band_44100_msb')
if '4band_44100_msb2' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_msb2.json')
param_name_auto=str('4band_44100_msb2')
if '4band_44100_reverse' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_reverse.json')
param_name_auto=str('4band_44100_reverse')
if '4band_44100_sw' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_44100_sw.json')
param_name_auto=str('4band_44100_sw')
if '4band_v2' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2.json')
param_name_auto=str('4band_v2')
if '4band_v2_sn' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/4band_v2_sn.json')
param_name_auto=str('4band_v2_sn')
if 'tmodelparam' in ModelName:
model_params_auto=str('uvr5_pack/lib_v5/modelparams/tmodelparam.json')
param_name_auto=str('User Model Param Set')
return param_name_auto , model_params_auto