import torch import torch.nn as nn import torch.nn.functional as F from model.warplayer import warp def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1): return nn.Sequential( torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1), nn.PReLU(out_planes) ) def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=True), ) def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): return nn.Sequential( nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=True), nn.PReLU(out_planes) ) class IFBlock(nn.Module): def __init__(self, in_planes, scale=1, c=64): super(IFBlock, self).__init__() self.scale = scale self.conv0 = nn.Sequential( conv(in_planes, c//2, 3, 2, 1), conv(c//2, c, 3, 2, 1), ) self.convblock = nn.Sequential( conv(c, c), conv(c, c), conv(c, c), conv(c, c), conv(c, c), conv(c, c), conv(c, c), conv(c, c), ) self.conv1 = nn.ConvTranspose2d(c, 4, 4, 2, 1) def forward(self, x): if self.scale != 1: x = F.interpolate(x, scale_factor= 1. / self.scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) x = self.conv0(x) x = self.convblock(x) + x x = self.conv1(x) flow = x if self.scale != 1: flow = F.interpolate(flow, scale_factor= self.scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) return flow class IFNet(nn.Module): def __init__(self): super(IFNet, self).__init__() self.block0 = IFBlock(6, scale=4, c=240) self.block1 = IFBlock(10, scale=2, c=150) self.block2 = IFBlock(10, scale=1, c=90) def forward(self, x): flow0 = self.block0(x) F1 = flow0 F1_large = F.interpolate(F1, scale_factor=2.0, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 2.0 warped_img0 = warp(x[:, :3], F1_large[:, :2]) warped_img1 = warp(x[:, 3:], F1_large[:, 2:4]) flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1_large), 1)) F2 = (flow0 + flow1) F2_large = F.interpolate(F2, scale_factor=2.0, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 2.0 warped_img0 = warp(x[:, :3], F2_large[:, :2]) warped_img1 = warp(x[:, 3:], F2_large[:, 2:4]) flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2_large), 1)) F3 = (flow0 + flow1 + flow2) return F3, [F1, F2, F3]