mirror of
https://github.com/hzwer/ECCV2022-RIFE.git
synced 2025-12-16 00:17:46 +01:00
Add UCF101 benchmark
This commit is contained in:
39
benchmark/UCF101.py
Normal file
39
benchmark/UCF101.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import os
|
||||
import sys
|
||||
sys.path.append('.')
|
||||
import cv2
|
||||
import math
|
||||
import torch
|
||||
import argparse
|
||||
import numpy as np
|
||||
from torch.nn import functional as F
|
||||
from pytorch_msssim import ssim_matlab
|
||||
from model.RIFE import Model
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
model = Model()
|
||||
model.load_model('train_log')
|
||||
model.eval()
|
||||
model.device()
|
||||
|
||||
path = 'UCF101/ucf101_interp_ours/'
|
||||
dirs = os.listdir(path)
|
||||
psnr_list = []
|
||||
ssim_list = []
|
||||
print(len(dirs))
|
||||
for d in dirs:
|
||||
img0 = (path + d + '/frame_00.png')
|
||||
img1 = (path + d + '/frame_02.png')
|
||||
gt = (path + d + '/frame_01_gt.png')
|
||||
img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
||||
img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
||||
gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
|
||||
pred = model.inference(img0, img1)[0]
|
||||
ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
|
||||
out = pred.detach().cpu().numpy().transpose(1, 2, 0)
|
||||
out = np.round(out * 255) / 255.
|
||||
gt = gt[0].cpu().numpy().transpose(1, 2, 0)
|
||||
psnr = -10 * math.log10(((gt - out) * (gt - out)).mean())
|
||||
psnr_list.append(psnr)
|
||||
ssim_list.append(ssim)
|
||||
print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
|
||||
Reference in New Issue
Block a user