mirror of
https://github.com/hzwer/ECCV2022-RIFE.git
synced 2025-12-16 16:37:51 +01:00
Fix super parameters
This commit is contained in:
@@ -110,7 +110,7 @@ class Model:
|
|||||||
self.optimG = AdamW(itertools.chain(
|
self.optimG = AdamW(itertools.chain(
|
||||||
self.flownet.parameters(),
|
self.flownet.parameters(),
|
||||||
self.contextnet.parameters(),
|
self.contextnet.parameters(),
|
||||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
||||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||||
self.epe = EPE()
|
self.epe = EPE()
|
||||||
|
|||||||
@@ -110,7 +110,7 @@ class Model:
|
|||||||
self.optimG = AdamW(itertools.chain(
|
self.optimG = AdamW(itertools.chain(
|
||||||
self.flownet.parameters(),
|
self.flownet.parameters(),
|
||||||
self.contextnet.parameters(),
|
self.contextnet.parameters(),
|
||||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
||||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||||
self.epe = EPE()
|
self.epe = EPE()
|
||||||
|
|||||||
@@ -110,7 +110,7 @@ class Model:
|
|||||||
self.optimG = AdamW(itertools.chain(
|
self.optimG = AdamW(itertools.chain(
|
||||||
self.flownet.parameters(),
|
self.flownet.parameters(),
|
||||||
self.contextnet.parameters(),
|
self.contextnet.parameters(),
|
||||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
||||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||||
self.epe = EPE()
|
self.epe = EPE()
|
||||||
|
|||||||
@@ -110,7 +110,7 @@ class Model:
|
|||||||
self.optimG = AdamW(itertools.chain(
|
self.optimG = AdamW(itertools.chain(
|
||||||
self.flownet.parameters(),
|
self.flownet.parameters(),
|
||||||
self.contextnet.parameters(),
|
self.contextnet.parameters(),
|
||||||
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-5)
|
self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
|
||||||
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
self.schedulerG = optim.lr_scheduler.CyclicLR(
|
||||||
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
|
||||||
self.epe = EPE()
|
self.epe = EPE()
|
||||||
|
|||||||
2
train.py
2
train.py
@@ -19,7 +19,7 @@ def get_learning_rate(step):
|
|||||||
mul = step / 2000.
|
mul = step / 2000.
|
||||||
else:
|
else:
|
||||||
mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
|
mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
|
||||||
return 5e-4 * mul
|
return 3e-4 * mul
|
||||||
|
|
||||||
def flow2rgb(flow_map_np):
|
def flow2rgb(flow_map_np):
|
||||||
h, w, _ = flow_map_np.shape
|
h, w, _ = flow_map_np.shape
|
||||||
|
|||||||
Reference in New Issue
Block a user