mirror of
https://github.com/hzwer/ECCV2022-RIFE.git
synced 2025-12-16 08:27:45 +01:00
Merge remote-tracking branch 'origin/main' into main
# Conflicts: # model/RIFE.py
This commit is contained in:
@@ -35,7 +35,7 @@ cd arXiv2020-RIFE
|
|||||||
pip3 install -r requirements.txt
|
pip3 install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
* Download the pretrained **HD** models from [here](https://drive.google.com/file/d/10-2AaFUyX-c7yCfubsxF2NTvM7DgvS8l/view?usp=sharing). (百度网盘链接:https://pan.baidu.com/s/1cJ7-dPuwR8THPUGWb207ZQ 密码:aa0w,把压缩包解开后放在 train_log/\*)
|
* Download the pretrained **HD** models from [here](https://drive.google.com/file/d/1APIzVeI-4ZZCEuIRE1m6WYfSCaOsi_7_/view?usp=sharing). (百度网盘链接:https://pan.baidu.com/share/init?surl=u6Q7-i4Hu4Vx9_5BJibPPA 密码:hfk3,把压缩包解开后放在 train_log/\*)
|
||||||
|
|
||||||
* Unzip and move the pretrained parameters to train_log/\*
|
* Unzip and move the pretrained parameters to train_log/\*
|
||||||
|
|
||||||
|
|||||||
@@ -213,7 +213,7 @@ while True:
|
|||||||
I1 = pad_image(I1)
|
I1 = pad_image(I1)
|
||||||
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
|
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
|
||||||
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
|
||||||
ssim = ssim_matlab(I0_small, I1_small)
|
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
|
||||||
|
|
||||||
if ssim > 0.995:
|
if ssim > 0.995:
|
||||||
if skip_frame % 100 == 0:
|
if skip_frame % 100 == 0:
|
||||||
|
|||||||
@@ -57,7 +57,15 @@ class Model:
|
|||||||
return pred, merged
|
return pred, merged
|
||||||
else:
|
else:
|
||||||
return pred
|
return pred
|
||||||
|
<<<<<<< HEAD
|
||||||
'''
|
'''
|
||||||
|
=======
|
||||||
|
|
||||||
|
def inference(self, img0, img1, scale=None):
|
||||||
|
imgs = torch.cat((img0, img1), 1)
|
||||||
|
flow, _ = self.flownet(torch.cat((img0, img1), 1))
|
||||||
|
return self.predict(imgs, flow, training=False)
|
||||||
|
>>>>>>> origin/main
|
||||||
|
|
||||||
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
|
||||||
for param_group in self.optimG.param_groups:
|
for param_group in self.optimG.param_groups:
|
||||||
|
|||||||
Reference in New Issue
Block a user