Files
ECCV2022-RIFE/README.md

174 lines
8.4 KiB
Markdown
Raw Normal View History

2021-05-17 14:51:02 +08:00
# RIFE - Real Time Video Interpolation
2021-03-06 11:46:15 +08:00
## [arXiv](https://arxiv.org/abs/2011.06294) | [YouTube](https://www.youtube.com/watch?v=60DX2T3zyVo&feature=youtu.be) | [Colab](https://colab.research.google.com/github/hzwer/arXiv2020-RIFE/blob/main/Colab_demo.ipynb) | [Tutorial](https://www.youtube.com/watch?v=gf_on-dbwyU&feature=emb_title) | [Demo](https://www.youtube.com/watch?v=oFnyq-e_b3g)
2020-11-14 14:05:02 +08:00
2021-03-04 17:14:22 +08:00
## Table of Contents
1. [Introduction](#introduction)
1. [Collection](#collection)
1. [Usage](#usage)
1. [Evaluation](#evaluation)
1. [Training and Reproduction](#training-and-reproduction)
1. [Citation](#citation)
1. [Reference](#reference)
1. [Sponsor](#sponsor)
## Introduction
2021-06-17 11:21:01 +08:00
This project is the implement of [RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation](https://arxiv.org/abs/2011.06294). If you are a developer, welcome to follow [Practical-RIFE](https://github.com/hzwer/Practical-RIFE), which aims to make RIFE more practical for users by adding various features and design new models.
2021-03-04 17:14:22 +08:00
2021-06-17 11:13:36 +08:00
Currently, our model can run 30+FPS for 2X 720p interpolation on a 2080Ti GPU. It supports 2X,4X,8X... interpolation, and multi-frame interpolation between a pair of images.
2020-11-12 20:27:43 +08:00
2020-11-13 20:24:27 +08:00
16X interpolation results from two input images:
2020-11-13 18:41:50 +08:00
![Demo](./demo/I0_slomo_clipped.gif)
![Demo](./demo/I2_slomo_clipped.gif)
2020-11-13 18:24:04 +08:00
2021-06-17 11:39:31 +08:00
## Software
2021-06-16 13:31:23 +08:00
[Squirrel-RIFE(中文软件)](https://github.com/YiWeiHuang-stack/Squirrel-Video-Frame-Interpolation) | [Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI) | [Flowframes](https://nmkd.itch.io/flowframes) | [RIFE-ncnn-vulkan](https://github.com/nihui/rife-ncnn-vulkan) | [RIFE-App(Paid)](https://grisk.itch.io/rife-app) | [Autodesk Flame](https://vimeo.com/505942142) | [SVP](https://www.svp-team.com/wiki/RIFE_AI_interpolation) |
2021-03-10 15:11:31 +08:00
2021-06-17 11:39:31 +08:00
## CLI Usage
2020-11-26 09:49:42 +08:00
### Installation
2020-11-12 20:27:43 +08:00
```
2020-11-26 09:49:42 +08:00
git clone git@github.com:hzwer/arXiv2020-RIFE.git
cd arXiv2020-RIFE
2020-12-02 19:05:01 +08:00
pip3 install -r requirements.txt
2020-11-12 20:27:43 +08:00
```
2021-06-15 13:33:27 +08:00
* Download the pretrained **HD** models from [here](https://drive.google.com/file/d/10-2AaFUyX-c7yCfubsxF2NTvM7DgvS8l/view?usp=sharing). (百度网盘链接:https://pan.baidu.com/s/1cJ7-dPuwR8THPUGWb207ZQ 密码:aa0w把压缩包解开后放在 train_log/\*)
2020-11-13 01:44:56 +08:00
2021-05-15 17:42:04 +08:00
* Unzip and move the pretrained parameters to train_log/\*
2020-11-12 23:39:28 +08:00
2021-05-15 22:32:20 +08:00
* This model is not reported by our paper, for our paper model please refer to [evaluation](https://github.com/hzwer/arXiv2020-RIFE#evaluation).
2020-11-26 09:49:42 +08:00
### Run
2020-11-26 11:34:11 +08:00
**Video Frame Interpolation**
2020-12-02 18:57:12 +08:00
You can use our [demo video](https://drive.google.com/file/d/1i3xlKb7ax7Y70khcTcuePi6E7crO_dFc/view?usp=sharing) or your own video.
2020-11-16 05:27:06 +08:00
```
2020-12-02 18:55:14 +08:00
python3 inference_video.py --exp=1 --video=video.mp4
2020-11-16 05:27:06 +08:00
```
2020-11-23 15:05:29 +08:00
(generate video_2X_xxfps.mp4)
2020-11-16 05:27:06 +08:00
```
2020-12-02 18:55:14 +08:00
python3 inference_video.py --exp=2 --video=video.mp4
2020-11-16 05:27:06 +08:00
```
2020-11-23 15:05:29 +08:00
(for 4X interpolation)
2020-11-16 05:27:06 +08:00
```
2021-02-27 17:00:53 +08:00
python3 inference_video.py --exp=1 --video=video.mp4 --scale=0.5
2020-12-13 23:55:04 +08:00
```
2021-02-27 17:48:21 +08:00
(If your video has very high resolution such as 4K, we recommend set --scale=0.5 (default 1.0). If you generate disordered pattern on your videos, try set --scale=2.0. This parameter control the process resolution for optical flow model.)
2020-12-13 23:55:04 +08:00
```
2020-12-03 18:04:13 +08:00
python3 inference_video.py --exp=2 --img=input/
```
(to read video from pngs, like input/0.png ... input/612.png, ensure that the png names are numbers)
```
2020-12-02 18:55:14 +08:00
python3 inference_video.py --exp=2 --video=video.mp4 --fps=60
2020-11-16 05:27:06 +08:00
```
2020-11-26 11:34:11 +08:00
(add slomo effect, the audio will be removed)
2020-11-18 11:29:08 +08:00
```
2020-12-02 18:55:14 +08:00
python3 inference_video.py --video=video.mp4 --montage --png
2020-11-17 19:19:21 +08:00
```
2020-12-03 18:54:29 +08:00
(if you want to montage the origin video, skip static frames and save the png format output)
2020-11-16 05:27:06 +08:00
2020-11-18 12:01:50 +08:00
The warning info, 'Warning: Your video has *** static frames, it may change the duration of the generated video.' means that your video has changed the frame rate by adding static frames, it is common if you have processed 25FPS video to 30FPS.
2020-11-16 05:29:36 +08:00
2020-11-13 23:28:32 +08:00
**Image Interpolation**
2020-11-12 23:39:28 +08:00
```
2020-12-02 18:55:14 +08:00
python3 inference_img.py --img img0.png img1.png --exp=4
2020-11-16 21:37:23 +08:00
```
2020-11-14 02:54:24 +08:00
(2^4=16X interpolation results)
2020-11-16 21:37:23 +08:00
After that, you can use pngs to generate mp4:
```
2020-12-02 18:55:14 +08:00
ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -c:v libx264 -pix_fmt yuv420p output/slomo.mp4 -q:v 0 -q:a 0
2020-11-16 21:37:23 +08:00
```
You can also use pngs to generate gif:
```
2020-12-02 18:55:14 +08:00
ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -vf "split[s0][s1];[s0]palettegen=stats_mode=single[p];[s1][p]paletteuse=new=1" output/slomo.gif
2020-11-13 23:28:32 +08:00
```
2021-01-17 15:24:57 +01:00
### Run in docker
Place the pre-trained models in `train_log/\*.pkl` (as above)
2021-01-17 15:24:57 +01:00
Building the container:
```
docker build -t rife -f docker/Dockerfile .
```
Running the container:
```
docker run --rm -it -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
```
```
docker run --rm -it -v $PWD:/host rife:latest inference_img --img img0.png img1.png --exp=4
2021-01-17 15:24:57 +01:00
```
2021-01-17 16:11:24 +01:00
Using gpu acceleration (requires proper gpu drivers for docker):
```
docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
```
2020-11-16 05:27:06 +08:00
## Evaluation
2021-05-07 11:27:46 +08:00
Download [RIFE model](https://drive.google.com/file/d/1U2AGFY00hafsPmm94-6deeM-9feGN-qg/view?usp=sharing) or [RIFE-Large model](https://drive.google.com/file/d/1khrpNkbrACYk3YVfHuRDJS5iUDSN7vFw/view?usp=sharing) reported by our paper.
2021-03-04 12:33:56 +08:00
**UCF101**: Download [UCF101 dataset](https://liuziwei7.github.io/projects/VoxelFlow) at ./UCF101/ucf101_interp_ours/
2020-11-14 14:56:13 +08:00
2020-11-26 19:11:17 +08:00
**Vimeo90K**: Download [Vimeo90K dataset](http://toflow.csail.mit.edu/) at ./vimeo_interp_test
2020-11-26 19:12:36 +08:00
2020-11-26 19:11:17 +08:00
**MiddleBury**: Download [MiddleBury OTHER dataset](https://vision.middlebury.edu/flow/data/) at ./other-data and ./other-gt-interp
2021-03-04 12:33:56 +08:00
2021-04-13 16:36:35 +08:00
**HD**: Download [HD dataset](https://github.com/baowenbo/MEMC-Net) at ./HD_dataset. We also provide a [google drive download link](https://drive.google.com/file/d/1iHaLoR2g1-FLgr9MEv51NH_KQYMYz-FA/view?usp=sharing).
2020-11-14 17:02:45 +08:00
```
2021-05-07 11:27:46 +08:00
# RIFE
2021-03-04 12:33:56 +08:00
python3 benchmark/UCF101.py
2021-03-04 17:50:17 +08:00
# "PSNR: 35.246 SSIM: 0.9691"
2020-12-02 18:55:14 +08:00
python3 benchmark/Vimeo90K.py
2021-03-04 17:50:17 +08:00
# "PSNR: 35.506 SSIM: 0.9779"
2021-03-09 17:52:10 +08:00
python3 benchmark/MiddleBury_Other.py
2021-03-04 17:50:17 +08:00
# "IE: 1.962"
2021-03-04 12:33:56 +08:00
python3 benchmark/HD.py
2021-03-06 11:37:56 +08:00
# "PSNR: 31.99"
2021-03-04 12:33:56 +08:00
python3 benchmark/HD_multi.py
2021-03-06 11:34:05 +08:00
# "PSNR: 18.89(544*1280), 28.83(720p), 24.96(1080p)"
2020-11-14 17:02:45 +08:00
```
2020-12-02 19:12:48 +08:00
## Training and Reproduction
2020-12-02 18:40:39 +08:00
Because Vimeo90K dataset and the corresponding optical flow labels are too large, we cannot provide a complete dataset download link. We provide you with [a subset containing 100 samples](https://drive.google.com/file/d/1_MQmFWqaptBuEbsV2tmbqFsxmxMIqYDU/view?usp=sharing) for testing the pipeline. Please unzip it at ./dataset
2020-12-02 19:12:48 +08:00
Each sample includes images (I0 I1 Imid : 9 x 256 x 448), and optical flow (flow_t0, flow_t1: 4, 256, 448).
2020-12-02 18:40:39 +08:00
For origin images, you can download them from [Vimeo90K dataset](http://toflow.csail.mit.edu/).
2021-06-16 11:20:25 +08:00
For generating optical flow labels, our paper use [pytorch-liteflownet](https://github.com/sniklaus/pytorch-liteflownet). Please notice that due to the data augmentation during training, generating optical flow labels during training may cause performance loss. We recommend that readers use RAFT to generate optical flow labels because it is easier to deploy. As long as the generated labels are correct, our method is not sensitive to the teacher model. Because the teacher can see the intermediate frame, the quality of the generated optical flow is much higher than that of the student.
2020-12-02 18:40:39 +08:00
We use 16 CPUs, 4 GPUs and 20G memory for training:
```
2020-12-14 11:50:43 +08:00
python3 -m torch.distributed.launch --nproc_per_node=4 train.py --world_size=4
2020-12-02 18:40:39 +08:00
```
2020-11-13 11:16:57 +08:00
## Citation
2020-11-13 23:28:32 +08:00
2020-11-13 10:27:30 +08:00
```
@article{huang2020rife,
title={RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation},
author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang},
journal={arXiv preprint arXiv:2011.06294},
year={2020}
}
```
## Reference
2020-12-02 19:00:32 +08:00
2020-11-13 11:16:57 +08:00
Optical Flow:
2020-11-26 11:34:11 +08:00
[ARFlow](https://github.com/lliuz/ARFlow) [pytorch-liteflownet](https://github.com/sniklaus/pytorch-liteflownet) [RAFT](https://github.com/princeton-vl/RAFT) [pytorch-PWCNet](https://github.com/sniklaus/pytorch-pwc)
2020-11-13 11:16:57 +08:00
2020-12-02 19:02:47 +08:00
Video Interpolation:
2021-03-09 10:59:38 +08:00
[DVF](https://github.com/lxx1991/pytorch-voxel-flow) [TOflow](https://github.com/Coldog2333/pytoflow) [SepConv](https://github.com/sniklaus/sepconv-slomo) [DAIN](https://github.com/baowenbo/DAIN) [CAIN](https://github.com/myungsub/CAIN) [MEMC-Net](https://github.com/baowenbo/MEMC-Net) [SoftSplat](https://github.com/sniklaus/softmax-splatting) [BMBC](https://github.com/JunHeum/BMBC) [EDSC](https://github.com/Xianhang/EDSC-pytorch) [EQVI](https://github.com/lyh-18/EQVI)
2021-02-12 19:23:29 +08:00
2021-03-04 17:14:22 +08:00
## Sponsor
2021-02-12 19:23:29 +08:00
感谢支持 Paypal Sponsor: https://www.paypal.com/paypalme/hzwer
<img width="160" alt="image" src="https://cdn.luogu.com.cn/upload/image_hosting/5h3609p1.png"><img width="160" alt="image" src="https://cdn.luogu.com.cn/upload/image_hosting/yi3kcwnw.png">