mirror of
https://github.com/AIGC-Audio/AudioGPT.git
synced 2025-12-16 11:57:58 +01:00
575 lines
29 KiB
Python
575 lines
29 KiB
Python
import sys
|
||
import os
|
||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
|
||
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_sing/DiffSinger'))
|
||
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
|
||
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio_img'))
|
||
import gradio as gr
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
||
import torch
|
||
from diffusers import StableDiffusionPipeline
|
||
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
||
import os
|
||
from langchain.agents.initialize import initialize_agent
|
||
from langchain.agents.tools import Tool
|
||
from langchain.chains.conversation.memory import ConversationBufferMemory
|
||
from langchain.llms.openai import OpenAI
|
||
import re
|
||
import uuid
|
||
import soundfile
|
||
from diffusers import StableDiffusionInpaintPipeline
|
||
from PIL import Image
|
||
import numpy as np
|
||
from omegaconf import OmegaConf
|
||
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
||
import cv2
|
||
import einops
|
||
from pytorch_lightning import seed_everything
|
||
import random
|
||
from ldm.util import instantiate_from_config
|
||
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
|
||
from pathlib import Path
|
||
from vocoder.hifigan.modules import VocoderHifigan
|
||
from vocoder.bigvgan.models import VocoderBigVGAN
|
||
from ldm.models.diffusion.ddim import DDIMSampler
|
||
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
|
||
from inference.svs.ds_e2e import DiffSingerE2EInfer
|
||
import whisper
|
||
from text_to_speech.TTS_binding import TTSInference
|
||
|
||
AUDIO_CHATGPT_PREFIX = """Audio ChatGPT
|
||
|
||
|
||
TOOLS:
|
||
------
|
||
|
||
Audio ChatGPT has access to the following tools:"""
|
||
|
||
AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
|
||
|
||
```
|
||
Thought: Do I need to use a tool? Yes
|
||
Action: the action to take, should be one of [{tool_names}]
|
||
Action Input: the input to the action
|
||
Observation: the result of the action
|
||
```
|
||
|
||
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
|
||
|
||
```
|
||
Thought: Do I need to use a tool? No
|
||
{ai_prefix}: [your response here]
|
||
```
|
||
"""
|
||
|
||
AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists.
|
||
You will remember to provide the audio file name loyally if it's provided in the last tool observation.
|
||
|
||
Begin!
|
||
|
||
Previous conversation history:
|
||
{chat_history}
|
||
New input: {input}
|
||
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
||
|
||
#temp_audio_filename = "audio/c00d9240.wav"
|
||
|
||
|
||
def cut_dialogue_history(history_memory, keep_last_n_words = 500):
|
||
tokens = history_memory.split()
|
||
n_tokens = len(tokens)
|
||
print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
|
||
if n_tokens < keep_last_n_words:
|
||
return history_memory
|
||
else:
|
||
paragraphs = history_memory.split('\n')
|
||
last_n_tokens = n_tokens
|
||
while last_n_tokens >= keep_last_n_words:
|
||
last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
|
||
paragraphs = paragraphs[1:]
|
||
return '\n' + '\n'.join(paragraphs)
|
||
|
||
def get_new_image_name(org_img_name, func_name="update"):
|
||
head_tail = os.path.split(org_img_name)
|
||
head = head_tail[0]
|
||
tail = head_tail[1]
|
||
name_split = tail.split('.')[0].split('_')
|
||
this_new_uuid = str(uuid.uuid4())[0:4]
|
||
if len(name_split) == 1:
|
||
most_org_file_name = name_split[0]
|
||
recent_prev_file_name = name_split[0]
|
||
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
||
else:
|
||
assert len(name_split) == 4
|
||
most_org_file_name = name_split[3]
|
||
recent_prev_file_name = name_split[0]
|
||
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
||
return os.path.join(head, new_file_name)
|
||
|
||
|
||
def initialize_model(config, ckpt, device):
|
||
config = OmegaConf.load(config)
|
||
model = instantiate_from_config(config.model)
|
||
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
|
||
|
||
model = model.to(device)
|
||
model.cond_stage_model.to(model.device)
|
||
model.cond_stage_model.device = model.device
|
||
sampler = DDIMSampler(model)
|
||
return sampler
|
||
|
||
|
||
def select_best_audio(prompt,wav_list):
|
||
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
|
||
text_embeddings = clap_model.get_text_embeddings([prompt])
|
||
score_list = []
|
||
for data in wav_list:
|
||
sr,wav = data
|
||
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
|
||
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
|
||
score_list.append(score)
|
||
max_index = np.array(score_list).argmax()
|
||
print(score_list,max_index)
|
||
return wav_list[max_index]
|
||
|
||
class MaskFormer:
|
||
def __init__(self, device):
|
||
self.device = device
|
||
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
||
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
|
||
|
||
def inference(self, image_path, text):
|
||
threshold = 0.5
|
||
min_area = 0.02
|
||
padding = 20
|
||
original_image = Image.open(image_path)
|
||
image = original_image.resize((512, 512))
|
||
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
|
||
with torch.no_grad():
|
||
outputs = self.model(**inputs)
|
||
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
|
||
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
|
||
if area_ratio < min_area:
|
||
return None
|
||
true_indices = np.argwhere(mask)
|
||
mask_array = np.zeros_like(mask, dtype=bool)
|
||
for idx in true_indices:
|
||
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
|
||
mask_array[padded_slice] = True
|
||
visual_mask = (mask_array * 255).astype(np.uint8)
|
||
image_mask = Image.fromarray(visual_mask)
|
||
return image_mask.resize(image.size)
|
||
|
||
|
||
class T2I:
|
||
def __init__(self, device):
|
||
print("Initializing T2I to %s" % device)
|
||
self.device = device
|
||
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
||
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
||
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
|
||
self.pipe.to(device)
|
||
|
||
def inference(self, text):
|
||
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
|
||
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
|
||
print(f'{text} refined to {refined_text}')
|
||
image = self.pipe(refined_text).images[0]
|
||
image.save(image_filename)
|
||
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
|
||
return image_filename
|
||
|
||
class ImageCaptioning:
|
||
def __init__(self, device):
|
||
print("Initializing ImageCaptioning to %s" % device)
|
||
self.device = device
|
||
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
||
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
|
||
|
||
def inference(self, image_path):
|
||
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
|
||
out = self.model.generate(**inputs)
|
||
captions = self.processor.decode(out[0], skip_special_tokens=True)
|
||
return captions
|
||
|
||
class T2A:
|
||
def __init__(self, device):
|
||
print("Initializing Make-An-Audio to %s" % device)
|
||
self.device = device
|
||
self.sampler = initialize_model('configs/text-to-audio/txt2audio_args.yaml', 'useful_ckpts/ta40multi_epoch=000085.ckpt', device=device)
|
||
self.vocoder = VocoderHifigan('vocoder/logs/hifi_0127',device=device)
|
||
|
||
def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
|
||
SAMPLE_RATE = 16000
|
||
prng = np.random.RandomState(seed)
|
||
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
|
||
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
|
||
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
|
||
c = self.sampler.model.get_learned_conditioning(n_samples * [text])
|
||
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
|
||
samples_ddim, _ = self.sampler.sample(S = ddim_steps,
|
||
conditioning = c,
|
||
batch_size = n_samples,
|
||
shape = shape,
|
||
verbose = False,
|
||
unconditional_guidance_scale = scale,
|
||
unconditional_conditioning = uc,
|
||
x_T = start_code)
|
||
|
||
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
|
||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
|
||
|
||
wav_list = []
|
||
for idx,spec in enumerate(x_samples_ddim):
|
||
wav = self.vocoder.vocode(spec)
|
||
wav_list.append((SAMPLE_RATE,wav))
|
||
best_wav = select_best_audio(text, wav_list)
|
||
return best_wav
|
||
|
||
def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
|
||
melbins,mel_len = 80,624
|
||
with torch.no_grad():
|
||
result = self.txt2audio(
|
||
text = text,
|
||
H = melbins,
|
||
W = mel_len
|
||
)
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
soundfile.write(audio_filename, result[1], samplerate = 16000)
|
||
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
|
||
return audio_filename
|
||
|
||
class I2A:
|
||
def __init__(self, device):
|
||
print("Initializing Make-An-Audio-Image to %s" % device)
|
||
self.device = device
|
||
self.sampler = initialize_model('text_to_audio/Make_An_Audio_img/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio_img/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
|
||
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio_img/vocoder/logs/bigv16k53w',device=device)
|
||
def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
|
||
SAMPLE_RATE = 16000
|
||
n_samples = 1 # only support 1 sample
|
||
prng = np.random.RandomState(seed)
|
||
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
|
||
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
|
||
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
|
||
#image = Image.fromarray(image)
|
||
image = Image.open(image)
|
||
image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
|
||
image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
|
||
c = image_embedding.repeat(n_samples, 1, 1)# shape:[1,77,1280],即还没有变成句子embedding,仍是每个单词的embedding
|
||
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
|
||
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
|
||
conditioning=c,
|
||
batch_size=n_samples,
|
||
shape=shape,
|
||
verbose=False,
|
||
unconditional_guidance_scale=scale,
|
||
unconditional_conditioning=uc,
|
||
x_T=start_code)
|
||
|
||
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
|
||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
|
||
wav_list = []
|
||
for idx,spec in enumerate(x_samples_ddim):
|
||
wav = self.vocoder.vocode(spec)
|
||
wav_list.append((SAMPLE_RATE,wav))
|
||
best_wav = wav_list[0]
|
||
return best_wav
|
||
def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
|
||
melbins,mel_len = 80,624
|
||
with torch.no_grad():
|
||
result = self.img2audio(
|
||
image=image,
|
||
H=melbins,
|
||
W=mel_len
|
||
)
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
soundfile.write(audio_filename, result[1], samplerate = 16000)
|
||
print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
|
||
return audio_filename
|
||
|
||
class TTS:
|
||
def __init__(self, device=None):
|
||
self.inferencer = TTSInference(device)
|
||
|
||
def inference(self, text):
|
||
global temp_audio_filename
|
||
inp = {"text": text}
|
||
out = self.inferencer.infer_once(inp)
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
temp_audio_filename = audio_filename
|
||
soundfile.write(audio_filename, out, samplerate = 22050)
|
||
return audio_filename
|
||
|
||
class T2S:
|
||
def __init__(self, device= None):
|
||
if device is None:
|
||
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||
print("Initializing DiffSinger to %s" % device)
|
||
self.device = device
|
||
exp_name = 'text_to_sing/DiffSinger/checkpoints/0831_opencpop_ds1000'
|
||
exp_name = 'checkpoints/0831_opencpop_ds1000'
|
||
config= 'text_to_sing/DiffSinger/usr/configs/midi/e2e/opencpop/ds100_adj_rel.yaml'
|
||
from utils.hparams import set_hparams
|
||
from utils.hparams import hparams as hp
|
||
set_hparams(config= config,exp_name=exp_name, print_hparams=False)
|
||
self.hp = hp
|
||
self.pipe = DiffSingerE2EInfer(self.hp)
|
||
def inference(self, inputs):
|
||
key = ['text', 'notes', 'notes_duration']
|
||
val = inputs.split(",")
|
||
print(val)
|
||
inp = {k:v for k,v in zip(key,val)}
|
||
print(inp)
|
||
wav = self.pipe.infer_once(inp)
|
||
wav *= 32767
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
soundfile.write(audio_filename, wav.astype(np.int16), self.hp['audio_sample_rate'])
|
||
print(f"Processed T2S.run, text: {val[0]}, notes: {val[1]}, notes duration: {val[2]}, audio_filename: {audio_filename}")
|
||
return audio_filename
|
||
|
||
# need to debug
|
||
class Inpaint:
|
||
def __init__(self, device):
|
||
print("Initializing Make-An-Audio-inpaint to %s" % device)
|
||
self.device = device
|
||
self.sampler = initialize_model('text_to_audio/Make_An_Audio_inpaint/configs/inpaint/txt2audio_args.yaml', 'text_to_audio/Make_An_Audio_inpaint/useful_ckpts/inpaint7_epoch00047.ckpt')
|
||
self.vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w',device=device)
|
||
def make_batch_sd(mel, mask, num_samples=1):
|
||
|
||
mel = torch.from_numpy(mel)[None,None,...].to(dtype=torch.float32)
|
||
mask = torch.from_numpy(mask)[None,None,...].to(dtype=torch.float32)
|
||
masked_mel = (1 - mask) * mel
|
||
|
||
mel = mel * 2 - 1
|
||
mask = mask * 2 - 1
|
||
masked_mel = masked_mel * 2 -1
|
||
|
||
batch = {
|
||
"mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
|
||
"mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
|
||
"masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
|
||
}
|
||
return batch
|
||
def gen_mel(input_audio):
|
||
sr,ori_wav = input_audio
|
||
print(sr,ori_wav.shape,ori_wav)
|
||
|
||
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储,不用管
|
||
if len(ori_wav.shape)==2:# stereo
|
||
ori_wav = librosa.to_mono(ori_wav.T)# gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
|
||
print(sr,ori_wav.shape,ori_wav)
|
||
ori_wav = librosa.resample(ori_wav,orig_sr = sr,target_sr = SAMPLE_RATE)
|
||
|
||
mel_len,hop_size = 848,256
|
||
input_len = mel_len * hop_size
|
||
if len(ori_wav) < input_len:
|
||
input_wav = np.pad(ori_wav,(0,mel_len*hop_size),constant_values=0)
|
||
else:
|
||
input_wav = ori_wav[:input_len]
|
||
|
||
mel = TRANSFORMS_16000(input_wav)
|
||
return mel
|
||
def show_mel_fn(input_audio):
|
||
crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
|
||
crop_mel = self.gen_mel(input_audio)[:,:crop_len]
|
||
color_mel = cmap_transform(crop_mel)
|
||
return Image.fromarray((color_mel*255).astype(np.uint8))
|
||
def inpaint(batch, seed, ddim_steps, num_samples=1, W=512, H=512):
|
||
model = self.sampler.model
|
||
|
||
prng = np.random.RandomState(seed)
|
||
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
|
||
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
|
||
|
||
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
|
||
cc = torch.nn.functional.interpolate(batch["mask"],
|
||
size=c.shape[-2:])
|
||
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
|
||
|
||
shape = (c.shape[1]-1,)+c.shape[2:]
|
||
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
|
||
conditioning=c,
|
||
batch_size=c.shape[0],
|
||
shape=shape,
|
||
verbose=False)
|
||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||
|
||
|
||
mask = batch["mask"]# [-1,1]
|
||
mel = torch.clamp((batch["mel"]+1.0)/2.0,min=0.0, max=1.0)
|
||
mask = torch.clamp((batch["mask"]+1.0)/2.0,min=0.0, max=1.0)
|
||
predicted_mel = torch.clamp((x_samples_ddim+1.0)/2.0,min=0.0, max=1.0)
|
||
inpainted = (1-mask)*mel+mask*predicted_mel
|
||
inpainted = inpainted.cpu().numpy().squeeze()
|
||
inapint_wav = self.vocoder.vocode(inpainted)
|
||
|
||
return inpainted, inapint_wav
|
||
def predict(input_audio,mel_and_mask,ddim_steps,seed):
|
||
show_mel = np.array(mel_and_mask['image'].convert("L"))/255 # 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
|
||
mask = np.array(mel_and_mask["mask"].convert("L"))/255
|
||
|
||
mel_bins,mel_len = 80,848
|
||
|
||
input_mel = self.gen_mel(input_audio)[:,:mel_len]# 由于展示的mel只展示了一部分,所以需要重新从音频生成mel
|
||
mask = np.pad(mask,((0,0),(0,mel_len-mask.shape[1])),mode='constant',constant_values=0)# 将mask填充到原来的mel的大小
|
||
print(mask.shape,input_mel.shape)
|
||
with torch.no_grad():
|
||
batch = make_batch_sd(input_mel,mask,device,num_samples=1)
|
||
inpainted,gen_wav = self.inpaint(
|
||
batch=batch,
|
||
seed=seed,
|
||
ddim_steps=ddim_steps,
|
||
num_samples=1,
|
||
H=mel_bins, W=mel_len
|
||
)
|
||
inpainted = inpainted[:,:show_mel.shape[1]]
|
||
color_mel = cmap_transform(inpainted)
|
||
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
|
||
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
|
||
return Image.fromarray((color_mel*255).astype(np.uint8)),(SAMPLE_RATE,gen_wav)
|
||
|
||
class ASR:
|
||
def __init__(self, device):
|
||
print("Initializing Whisper to %s" % device)
|
||
self.device = device
|
||
self.model = whisper.load_model("base", device=device)
|
||
def inference(self, audio_path):
|
||
audio = whisper.load_audio(audio_path)
|
||
audio = whisper.pad_or_trim(audio)
|
||
mel = whisper.log_mel_spectrogram(audio).to(self.device)
|
||
_, probs = self.model.detect_language(mel)
|
||
options = whisper.DecodingOptions()
|
||
result = whisper.decode(self.model, mel, options)
|
||
return result.text
|
||
|
||
class ConversationBot:
|
||
def __init__(self):
|
||
print("Initializing AudioChatGPT")
|
||
self.llm = OpenAI(temperature=0)
|
||
self.t2i = T2I(device="cuda:0")
|
||
self.i2t = ImageCaptioning(device="cuda:1")
|
||
self.t2a = T2A(device="cuda:0")
|
||
self.t2s = T2S(device="cuda:2")
|
||
self.i2a = I2A(device="cuda:1")
|
||
self.asr = ASR(device="cuda:1")
|
||
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
||
self.tools = [
|
||
Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
|
||
description="useful for when you want to generate an image from a user input text and it saved it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
|
||
"The input to this tool should be a string, representing the text used to generate image. "),
|
||
Tool(name="Get Photo Description", func=self.i2t.inference,
|
||
description="useful for when you want to know what is inside the photo. receives image_path as input. "
|
||
"The input to this tool should be a string, representing the image_path. "),
|
||
Tool(name="Generate Audio From User Input Text", func=self.t2a.inference,
|
||
description="useful for when you want to generate an audio from a user input text and it saved it to a file."
|
||
"The input to this tool should be a string, representing the text used to generate audio."),
|
||
Tool(name="Generate singing voice From User Input Text", func=self.t2s.inference,
|
||
description="useful for when you want to generate a piece of singing voice from its description."
|
||
"The input to this tool should be a comma seperated string of three, representing the text sequence and its corresponding note and duration sequence."),
|
||
Tool(name="Generate Audio From The Image", func=self.i2a.inference,
|
||
description="useful for when you want to generate an audio based on an image."
|
||
"The input to this tool should be a string, representing the image_path. "),
|
||
Tool(name="Get Audio Transcription", func=self.asr.inference,
|
||
description="useful for when you want to know the text content corresponding to this audio, receives audio_path as input."
|
||
"The input to this tool should be a string, representing the audio_path.")
|
||
]
|
||
self.agent = initialize_agent(
|
||
self.tools,
|
||
self.llm,
|
||
agent="conversational-react-description",
|
||
verbose=True,
|
||
memory=self.memory,
|
||
return_intermediate_steps=True,
|
||
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
||
|
||
def run_text(self, text, state):
|
||
print("===============Running run_text =============")
|
||
print("Inputs:", text, state)
|
||
print("======>Previous memory:\n %s" % self.agent.memory)
|
||
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
|
||
res = self.agent({"input": text})
|
||
tool = res['intermediate_steps'][0][0].tool
|
||
if tool == "Generate Image From User Input Text":
|
||
print("======>Current memory:\n %s" % self.agent.memory)
|
||
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
||
state = state + [(text, response)]
|
||
print("Outputs:", state)
|
||
return state, state, None
|
||
print("======>Current memory:\n %s" % self.agent.memory)
|
||
audio_filename = res['intermediate_steps'][0][1]
|
||
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
||
#response = res['output'] + f"<audio src=audio_filename controls=controls></audio>"
|
||
state = state + [(text, response)]
|
||
print("Outputs:", state)
|
||
return state, state, audio_filename
|
||
|
||
def run_image_or_audio(self, file, state, txt):
|
||
file_type = file.name[-3:]
|
||
if file_type == "wav":
|
||
print("===============Running run_audio =============")
|
||
print("Inputs:", file, state)
|
||
print("======>Previous memory:\n %s" % self.agent.memory)
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
print("======>Auto Resize Audio...")
|
||
audio_load = whisper.load_audio(file.name)
|
||
soundfile.write(audio_filename, audio_load, samplerate = 16000)
|
||
description = self.asr.inference(audio_filename)
|
||
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
|
||
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
|
||
AI_prompt = "Received. "
|
||
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
|
||
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
|
||
state = state + [(f"*{audio_filename}*", AI_prompt)]
|
||
print("Outputs:", state)
|
||
return state, state, txt + ' ' + audio_filename + ' ', audio_filename
|
||
else:
|
||
print("===============Running run_image =============")
|
||
print("Inputs:", file, state)
|
||
print("======>Previous memory:\n %s" % self.agent.memory)
|
||
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
|
||
print("======>Auto Resize Image...")
|
||
img = Image.open(file.name)
|
||
width, height = img.size
|
||
ratio = min(512 / width, 512 / height)
|
||
width_new, height_new = (round(width * ratio), round(height * ratio))
|
||
img = img.resize((width_new, height_new))
|
||
img = img.convert('RGB')
|
||
img.save(image_filename, "PNG")
|
||
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
|
||
description = self.i2t.inference(image_filename)
|
||
Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
|
||
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
|
||
AI_prompt = "Received. "
|
||
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
|
||
print("======>Current memory:\n %s" % self.agent.memory)
|
||
state = state + [(f"*{image_filename}*", AI_prompt)]
|
||
print("Outputs:", state)
|
||
return state, state, txt + ' ' + image_filename + ' ', None
|
||
|
||
if __name__ == '__main__':
|
||
bot = ConversationBot()
|
||
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
|
||
with gr.Row():
|
||
gr.Markdown("## Audio ChatGPT")
|
||
chatbot = gr.Chatbot(elem_id="chatbot", label="Audio ChatGPT")
|
||
state = gr.State([])
|
||
with gr.Row():
|
||
with gr.Column(scale=0.7):
|
||
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
||
with gr.Column(scale=0.15, min_width=0):
|
||
clear = gr.Button("Clear️")
|
||
with gr.Column(scale=0.15, min_width=0):
|
||
btn = gr.UploadButton("Upload", file_types=["image","audio"])
|
||
with gr.Column():
|
||
outaudio = gr.Audio()
|
||
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio])
|
||
txt.submit(lambda: "", None, txt)
|
||
btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, txt, outaudio])
|
||
clear.click(bot.memory.clear)
|
||
clear.click(lambda: [], None, chatbot)
|
||
clear.click(lambda: [], None, state)
|
||
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|