mirror of
https://github.com/AIGC-Audio/AudioGPT.git
synced 2025-12-16 20:07:58 +01:00
313 lines
14 KiB
Python
313 lines
14 KiB
Python
import sys
|
||
import os
|
||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
|
||
import gradio as gr
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
|
||
import torch
|
||
from diffusers import StableDiffusionPipeline
|
||
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
||
import os
|
||
from langchain.agents.initialize import initialize_agent
|
||
from langchain.agents.tools import Tool
|
||
from langchain.chains.conversation.memory import ConversationBufferMemory
|
||
from langchain.llms.openai import OpenAI
|
||
import re
|
||
import uuid
|
||
import soundfile
|
||
from diffusers import StableDiffusionInpaintPipeline
|
||
from PIL import Image
|
||
import numpy as np
|
||
from omegaconf import OmegaConf
|
||
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
|
||
import cv2
|
||
import einops
|
||
from pytorch_lightning import seed_everything
|
||
import random
|
||
from ldm.util import instantiate_from_config
|
||
from pathlib import Path
|
||
from vocoder.hifigan.modules import VocoderHifigan
|
||
from ldm.models.diffusion.ddim import DDIMSampler
|
||
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
|
||
|
||
|
||
AUDIO_CHATGPT_PREFIX = """Audio ChatGPT
|
||
|
||
|
||
TOOLS:
|
||
------
|
||
|
||
Audio ChatGPT has access to the following tools:"""
|
||
|
||
AUDIO_CHATGPT_FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:
|
||
|
||
```
|
||
Thought: Do I need to use a tool? Yes
|
||
Action: the action to take, should be one of [{tool_names}]
|
||
Action Input: the input to the action
|
||
Observation: the result of the action
|
||
```
|
||
|
||
When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:
|
||
|
||
```
|
||
Thought: Do I need to use a tool? No
|
||
{ai_prefix}: [your response here]
|
||
```
|
||
"""
|
||
|
||
AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists.
|
||
You will remember to provide the image file name loyally if it's provided in the last tool observation.
|
||
|
||
Begin!
|
||
|
||
Previous conversation history:
|
||
{chat_history}
|
||
New input: {input}
|
||
Thought: Do I need to use a tool? {agent_scratchpad}"""
|
||
|
||
SAMPLE_RATE = 16000
|
||
temp_audio_filename = "audio/c00d9240.wav"
|
||
|
||
def cut_dialogue_history(history_memory, keep_last_n_words = 500):
|
||
tokens = history_memory.split()
|
||
n_tokens = len(tokens)
|
||
print(f"hitory_memory:{history_memory}, n_tokens: {n_tokens}")
|
||
if n_tokens < keep_last_n_words:
|
||
return history_memory
|
||
else:
|
||
paragraphs = history_memory.split('\n')
|
||
last_n_tokens = n_tokens
|
||
while last_n_tokens >= keep_last_n_words:
|
||
last_n_tokens = last_n_tokens - len(paragraphs[0].split(' '))
|
||
paragraphs = paragraphs[1:]
|
||
return '\n' + '\n'.join(paragraphs)
|
||
|
||
def get_new_image_name(org_img_name, func_name="update"):
|
||
head_tail = os.path.split(org_img_name)
|
||
head = head_tail[0]
|
||
tail = head_tail[1]
|
||
name_split = tail.split('.')[0].split('_')
|
||
this_new_uuid = str(uuid.uuid4())[0:4]
|
||
if len(name_split) == 1:
|
||
most_org_file_name = name_split[0]
|
||
recent_prev_file_name = name_split[0]
|
||
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
||
else:
|
||
assert len(name_split) == 4
|
||
most_org_file_name = name_split[3]
|
||
recent_prev_file_name = name_split[0]
|
||
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
|
||
return os.path.join(head, new_file_name)
|
||
|
||
|
||
def initialize_model(config, ckpt, device):
|
||
config = OmegaConf.load(config)
|
||
model = instantiate_from_config(config.model)
|
||
model.load_state_dict(torch.load(ckpt,map_location='cpu')["state_dict"], strict=False)
|
||
|
||
model = model.to(device)
|
||
model.cond_stage_model.to(model.device)
|
||
model.cond_stage_model.device = model.device
|
||
sampler = DDIMSampler(model)
|
||
|
||
return sampler
|
||
|
||
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
|
||
|
||
def select_best_audio(prompt,wav_list):
|
||
text_embeddings = clap_model.get_text_embeddings([prompt])
|
||
score_list = []
|
||
for data in wav_list:
|
||
sr,wav = data
|
||
audio_embeddings = clap_model.get_audio_embeddings([(torch.FloatTensor(wav),sr)], resample=True)
|
||
score = clap_model.compute_similarity(audio_embeddings, text_embeddings,use_logit_scale=False).squeeze().cpu().numpy()
|
||
score_list.append(score)
|
||
max_index = np.array(score_list).argmax()
|
||
print(score_list,max_index)
|
||
return wav_list[max_index]
|
||
|
||
class MaskFormer:
|
||
def __init__(self, device):
|
||
self.device = device
|
||
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
||
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
|
||
|
||
def inference(self, image_path, text):
|
||
threshold = 0.5
|
||
min_area = 0.02
|
||
padding = 20
|
||
original_image = Image.open(image_path)
|
||
image = original_image.resize((512, 512))
|
||
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
|
||
with torch.no_grad():
|
||
outputs = self.model(**inputs)
|
||
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
|
||
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
|
||
if area_ratio < min_area:
|
||
return None
|
||
true_indices = np.argwhere(mask)
|
||
mask_array = np.zeros_like(mask, dtype=bool)
|
||
for idx in true_indices:
|
||
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
|
||
mask_array[padded_slice] = True
|
||
visual_mask = (mask_array * 255).astype(np.uint8)
|
||
image_mask = Image.fromarray(visual_mask)
|
||
return image_mask.resize(image.size)
|
||
|
||
|
||
class T2I:
|
||
def __init__(self, device):
|
||
print("Initializing T2I to %s" % device)
|
||
self.device = device
|
||
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
|
||
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
||
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
|
||
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
|
||
self.pipe.to(device)
|
||
|
||
def inference(self, text):
|
||
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
|
||
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
|
||
print(f'{text} refined to {refined_text}')
|
||
image = self.pipe(refined_text).images[0]
|
||
image.save(image_filename)
|
||
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
|
||
return image_filename
|
||
|
||
|
||
class T2A:
|
||
def __init__(self, device):
|
||
print("Initializing Make-An-Audio to %s" % device)
|
||
self.device = device
|
||
self.sampler = initialize_model('configs/text-to-audio/txt2audio_args.yaml', 'useful_ckpts/ta40multi_epoch=000085.ckpt', device=device)
|
||
self.vocoder = VocoderHifigan('vocoder/logs/hifi_0127',device=device)
|
||
|
||
def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
|
||
prng = np.random.RandomState(seed)
|
||
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
|
||
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
|
||
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
|
||
c = self.sampler.model.get_learned_conditioning(n_samples * [text])
|
||
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
|
||
samples_ddim, _ = self.sampler.sample(S = ddim_steps,
|
||
conditioning = c,
|
||
batch_size = n_samples,
|
||
shape = shape,
|
||
verbose = False,
|
||
unconditional_guidance_scale = scale,
|
||
unconditional_conditioning = uc,
|
||
x_T = start_code)
|
||
|
||
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
|
||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
|
||
|
||
wav_list = []
|
||
for idx,spec in enumerate(x_samples_ddim):
|
||
wav = self.vocoder.vocode(spec)
|
||
wav_list.append((SAMPLE_RATE,wav))
|
||
best_wav = select_best_audio(text, wav_list)
|
||
return best_wav
|
||
|
||
def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
|
||
global temp_audio_filename
|
||
melbins,mel_len = 80,624
|
||
with torch.no_grad():
|
||
result = self.txt2audio(
|
||
text = text,
|
||
H = melbins,
|
||
W = mel_len
|
||
)
|
||
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
|
||
temp_audio_filename = audio_filename
|
||
soundfile.write(audio_filename, result[1], samplerate = 16000)
|
||
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
|
||
return audio_filename
|
||
|
||
|
||
class ConversationBot:
|
||
def __init__(self):
|
||
print("Initializing AudioChatGPT")
|
||
self.llm = OpenAI(temperature=0)
|
||
|
||
self.t2i = T2I(device="cuda:2")
|
||
self.t2a = T2A(device="cuda:2")
|
||
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
|
||
self.tools = [
|
||
Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
|
||
description="useful for when you want to generate an image from a user input text and it saved it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
|
||
"The input to this tool should be a string, representing the text used to generate image. "),
|
||
Tool(name="Generate Audio From User Input Text", func=self.t2a.inference,
|
||
description="useful for when you want to generate an audio from a user input text and it saved it to a file."
|
||
"The input to this tool should be a string, representing the text used to generate audio.")]
|
||
self.agent = initialize_agent(
|
||
self.tools,
|
||
self.llm,
|
||
agent="conversational-react-description",
|
||
verbose=True,
|
||
memory=self.memory,
|
||
return_intermediate_steps=True,
|
||
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
|
||
|
||
def run_text(self, text, state):
|
||
print("===============Running run_text =============")
|
||
print("Inputs:", text, state)
|
||
print("======>Previous memory:\n %s" % self.agent.memory)
|
||
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
|
||
res = self.agent({"input": text})
|
||
print("======>Current memory:\n %s" % self.agent.memory)
|
||
response = re.sub('(image/\S*png)', lambda m: f'})*{m.group(0)}*', res['output'])
|
||
state = state + [(text, response)]
|
||
print("Outputs:", state)
|
||
return state, state, temp_audio_filename
|
||
#return outaudio
|
||
|
||
def run_image(self, image, state, txt):
|
||
print("===============Running run_image =============")
|
||
print("Inputs:", image, state)
|
||
print("======>Previous memory:\n %s" % self.agent.memory)
|
||
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
|
||
print("======>Auto Resize Image...")
|
||
img = Image.open(image.name)
|
||
width, height = img.size
|
||
ratio = min(512 / width, 512 / height)
|
||
width_new, height_new = (round(width * ratio), round(height * ratio))
|
||
img = img.resize((width_new, height_new))
|
||
img = img.convert('RGB')
|
||
img.save(image_filename, "PNG")
|
||
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
|
||
description = self.i2t.inference(image_filename)
|
||
Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
|
||
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
|
||
AI_prompt = "Received. "
|
||
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
|
||
print("======>Current memory:\n %s" % self.agent.memory)
|
||
state = state + [(f"*{image_filename}*", AI_prompt)]
|
||
print("Outputs:", state)
|
||
return state, state, txt + ' ' + image_filename + ' '
|
||
|
||
|
||
if __name__ == '__main__':
|
||
bot = ConversationBot()
|
||
with gr.Blocks(css="#chatbot .overflow-y-auto{height:500px}") as demo:
|
||
with gr.Row():
|
||
gr.Markdown("## Audio ChatGPT")
|
||
chatbot = gr.Chatbot(elem_id="chatbot", label="Audio ChatGPT")
|
||
state = gr.State([])
|
||
with gr.Row():
|
||
with gr.Column(scale=0.7):
|
||
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image").style(container=False)
|
||
with gr.Column(scale=0.15, min_width=0):
|
||
clear = gr.Button("Clear️")
|
||
with gr.Column(scale=0.15, min_width=0):
|
||
btn = gr.UploadButton("Upload", file_types=["image"])
|
||
with gr.Column():
|
||
outaudio = gr.Audio()
|
||
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio])
|
||
txt.submit(lambda: "", None, txt)
|
||
btn.upload(bot.run_image, [btn, state, txt], [chatbot, state, txt])
|
||
clear.click(bot.memory.clear)
|
||
clear.click(lambda: [], None, chatbot)
|
||
clear.click(lambda: [], None, state)
|
||
demo.launch(server_name="0.0.0.0", server_port=7862, share=True)
|