mirror of
https://github.com/AIGC-Audio/AudioGPT.git
synced 2025-12-16 11:57:58 +01:00
129 lines
5.1 KiB
Python
129 lines
5.1 KiB
Python
import math
|
|
import torch
|
|
|
|
|
|
class ExponentialDecayScheduler(torch.optim.lr_scheduler._LRScheduler):
|
|
|
|
def __init__(self, optimizer, total_iters, final_lrs,
|
|
warmup_iters=3000, last_epoch=-1, verbose=False):
|
|
self.total_iters = total_iters
|
|
self.final_lrs = final_lrs
|
|
if not isinstance(self.final_lrs, list) and not isinstance(
|
|
self.final_lrs, tuple):
|
|
self.final_lrs = [self.final_lrs] * len(optimizer.param_groups)
|
|
self.warmup_iters = warmup_iters
|
|
self.bases = [0.0,] * len(optimizer.param_groups)
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
for i, (base_lr, final_lr) in enumerate(zip(self.base_lrs, self.final_lrs)):
|
|
base = (final_lr / base_lr) ** (1 / (
|
|
self.total_iters - self.warmup_iters))
|
|
self.bases[i] = base
|
|
|
|
def _get_closed_form_lr(self):
|
|
warmup_coeff = 1.0
|
|
current_iter = self._step_count
|
|
if current_iter < self.warmup_iters:
|
|
warmup_coeff = current_iter / self.warmup_iters
|
|
current_lrs = []
|
|
# if not self.linear_warmup:
|
|
# for base_lr, final_lr, base in zip(self.base_lrs, self.final_lrs, self.bases):
|
|
# # current_lr = warmup_coeff * base_lr * math.exp(((current_iter - self.warmup_iters) / self.total_iters) * math.log(final_lr / base_lr))
|
|
# current_lr = warmup_coeff * base_lr * (base ** (current_iter - self.warmup_iters))
|
|
# current_lrs.append(current_lr)
|
|
# else:
|
|
for base_lr, final_lr, base in zip(self.base_lrs, self.final_lrs,
|
|
self.bases):
|
|
if current_iter <= self.warmup_iters:
|
|
current_lr = warmup_coeff * base_lr
|
|
else:
|
|
# current_lr = warmup_coeff * base_lr * math.exp(((current_iter - self.warmup_iters) / self.total_iters) * math.log(final_lr / base_lr))
|
|
current_lr = base_lr * (base ** (current_iter - self.warmup_iters))
|
|
current_lrs.append(current_lr)
|
|
return current_lrs
|
|
|
|
def get_lr(self):
|
|
return self._get_closed_form_lr()
|
|
|
|
|
|
class NoamScheduler(torch.optim.lr_scheduler._LRScheduler):
|
|
|
|
def __init__(self, optimizer, model_size=512, factor=1, warmup_iters=3000,
|
|
last_epoch=-1, verbose=False):
|
|
self.model_size = model_size
|
|
self.warmup_iters = warmup_iters
|
|
# self.factors = [group["lr"] / (self.model_size ** (-0.5) * self.warmup_iters ** (-0.5)) for group in optimizer.param_groups]
|
|
self.factor = factor
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
|
|
def _get_closed_form_lr(self):
|
|
current_iter = self._step_count
|
|
current_lrs = []
|
|
for _ in self.base_lrs:
|
|
current_lr = self.factor * \
|
|
(self.model_size ** (-0.5) * min(current_iter ** (-0.5),
|
|
current_iter * self.warmup_iters ** (-1.5)))
|
|
current_lrs.append(current_lr)
|
|
return current_lrs
|
|
|
|
def get_lr(self):
|
|
return self._get_closed_form_lr()
|
|
|
|
|
|
class CosineWithWarmup(torch.optim.lr_scheduler._LRScheduler):
|
|
|
|
def __init__(self, optimizer, total_iters, warmup_iters,
|
|
num_cycles=0.5, last_epoch=-1, verbose=False):
|
|
self.total_iters = total_iters
|
|
self.warmup_iters = warmup_iters
|
|
self.num_cycles = num_cycles
|
|
super().__init__(optimizer, last_epoch, verbose)
|
|
|
|
def lr_lambda(self, iteration):
|
|
if iteration < self.warmup_iters:
|
|
return float(iteration) / float(max(1, self.warmup_iters))
|
|
progress = float(iteration - self.warmup_iters) / float(max(1,
|
|
self.total_iters - self.warmup_iters))
|
|
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(
|
|
self.num_cycles) * 2.0 * progress)))
|
|
|
|
def _get_closed_form_lr(self):
|
|
current_iter = self._step_count
|
|
current_lrs = []
|
|
for base_lr in self.base_lrs:
|
|
current_lr = base_lr * self.lr_lambda(current_iter)
|
|
current_lrs.append(current_lr)
|
|
return current_lrs
|
|
|
|
def get_lr(self):
|
|
return self._get_closed_form_lr()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model = torch.nn.Linear(10, 5)
|
|
optimizer = torch.optim.Adam(model.parameters(), 5e-4)
|
|
epochs = 25
|
|
iters = 600
|
|
scheduler = CosineWithWarmup(optimizer, 600 * 25, 600 * 5,)
|
|
# scheduler = ExponentialDecayScheduler(optimizer, 600 * 25, 5e-7, 600 * 5)
|
|
criterion = torch.nn.MSELoss()
|
|
lrs = []
|
|
for epoch in range(1, epochs + 1):
|
|
for iteration in range(1, iters + 1):
|
|
optimizer.zero_grad()
|
|
x = torch.randn(4, 10)
|
|
y = torch.randn(4, 5)
|
|
loss = criterion(model(x), y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
scheduler.step()
|
|
# print(f"lr: {scheduler.get_last_lr()}")
|
|
# lrs.append(scheduler.get_last_lr())
|
|
lrs.append(optimizer.param_groups[0]["lr"])
|
|
import matplotlib.pyplot as plt
|
|
plt.plot(list(range(1, len(lrs) + 1)), lrs, '-o', markersize=1)
|
|
# plt.legend(loc="best")
|
|
plt.xlabel("Iteration")
|
|
plt.ylabel("LR")
|
|
|
|
plt.savefig("lr_curve.png", dpi=100)
|