Merge branch 'main' into hzq

# Conflicts:
#	assets/7ef0ec0b.wav
#	audio-chatgpt.py
#	download.sh
This commit is contained in:
洪芷晴
2023-03-24 22:35:19 +08:00
14 changed files with 568 additions and 85 deletions

View File

@@ -3,7 +3,8 @@ import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_sing/DiffSinger'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text-to-audio/MakeAnAudio'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio'))
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'text_to_audio/Make_An_Audio_img'))
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
import torch
@@ -28,11 +29,15 @@ import einops
from pytorch_lightning import seed_everything
import random
from ldm.util import instantiate_from_config
from ldm.data.extract_mel_spectrogram import TRANSFORMS_16000
from pathlib import Path
from vocoder.hifigan.modules import VocoderHifigan
from vocoder.bigvgan.models import VocoderBigVGAN
from ldm.models.diffusion.ddim import DDIMSampler
from wav_evaluation.models.CLAPWrapper import CLAPWrapper
from inference.svs.ds_e2e import DiffSingerE2EInfer
import whisper
import torch
from inference.svs.ds_e2e import DiffSingerE2EInfer
from inference.tts.GenerSpeech import GenerSpeechInfer
@@ -67,7 +72,7 @@ Thought: Do I need to use a tool? No
"""
AUDIO_CHATGPT_SUFFIX = """You are very strict to the filename correctness and will never fake a file name if not exists.
You will remember to provide the image file name loyally if it's provided in the last tool observation.
You will remember to provide the audio file name loyally if it's provided in the last tool observation.
Begin!
@@ -76,8 +81,8 @@ Previous conversation history:
New input: {input}
Thought: Do I need to use a tool? {agent_scratchpad}"""
SAMPLE_RATE = 16000
temp_audio_filename = "audio/c00d9240.wav"
#temp_audio_filename = "audio/c00d9240.wav"
def cut_dialogue_history(history_memory, keep_last_n_words = 500):
tokens = history_memory.split()
@@ -120,12 +125,11 @@ def initialize_model(config, ckpt, device):
model.cond_stage_model.to(model.device)
model.cond_stage_model.device = model.device
sampler = DDIMSampler(model)
return sampler
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
def select_best_audio(prompt,wav_list):
clap_model = CLAPWrapper('useful_ckpts/CLAP/CLAP_weights_2022.pth','useful_ckpts/CLAP/config.yml',use_cuda=torch.cuda.is_available())
text_embeddings = clap_model.get_text_embeddings([prompt])
score_list = []
for data in wav_list:
@@ -185,6 +189,18 @@ class T2I:
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class T2A:
def __init__(self, device):
@@ -194,6 +210,7 @@ class T2A:
self.vocoder = VocoderHifigan('vocoder/logs/hifi_0127',device=device)
def txt2audio(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
SAMPLE_RATE = 16000
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
@@ -220,7 +237,6 @@ class T2A:
return best_wav
def inference(self, text, seed = 55, scale = 1.5, ddim_steps = 100, n_samples = 3, W = 624, H = 80):
global temp_audio_filename
melbins,mel_len = 80,624
with torch.no_grad():
result = self.txt2audio(
@@ -229,12 +245,59 @@ class T2A:
W = mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
temp_audio_filename = audio_filename
wavfile.write(audio_filename, 16000, result[1])
#soundfile.write(audio_filename, result[1], samplerate = 16000)
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed T2I.run, text: {text}, audio_filename: {audio_filename}")
return audio_filename
class I2A:
def __init__(self, device):
print("Initializing Make-An-Audio-Image to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio_img/configs/img_to_audio/img2audio_args.yaml', 'text_to_audio/Make_An_Audio_img/useful_ckpts/ta54_epoch=000216.ckpt', device=device)
self.vocoder = VocoderBigVGAN('text_to_audio/Make_An_Audio_img/vocoder/logs/bigv16k53w',device=device)
def img2audio(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
SAMPLE_RATE = 16000
n_samples = 1 # only support 1 sample
prng = np.random.RandomState(seed)
start_code = prng.randn(n_samples, self.sampler.model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
uc = self.sampler.model.get_learned_conditioning(n_samples * [""])
#image = Image.fromarray(image)
image = Image.open(image)
image = self.sampler.model.cond_stage_model.preprocess(image).unsqueeze(0)
image_embedding = self.sampler.model.cond_stage_model.forward_img(image)
c = image_embedding.repeat(n_samples, 1, 1)# shape:[1,77,1280],即还没有变成句子embedding仍是每个单词的embedding
shape = [self.sampler.model.first_stage_model.embed_dim, H//8, W//8] # (z_dim, 80//2^x, 848//2^x)
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
x_T=start_code)
x_samples_ddim = self.sampler.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) # [0, 1]
wav_list = []
for idx,spec in enumerate(x_samples_ddim):
wav = self.vocoder.vocode(spec)
wav_list.append((SAMPLE_RATE,wav))
best_wav = wav_list[0]
return best_wav
def inference(self, image, seed = 55, scale = 3, ddim_steps = 100, W = 624, H = 80):
melbins,mel_len = 80,624
with torch.no_grad():
result = self.img2audio(
image=image,
H=melbins,
W=mel_len
)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
soundfile.write(audio_filename, result[1], samplerate = 16000)
print(f"Processed I2a.run, image_filename: {image}, audio_filename: {audio_filename}")
return audio_filename
class T2S:
def __init__(self, device= None):
if device is None:
@@ -256,7 +319,6 @@ class T2S:
self.hp = hp
def inference(self, inputs):
global temp_audio_filename
self.set_model_hparams()
val = inputs.split(",")
key = ['text', 'notes', 'notes_duration']
@@ -267,10 +329,9 @@ class T2S:
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
temp_audio_filename = audio_filename
wavfile.write(temp_audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(f"Processed T2S.run, audio_filename: {audio_filename}")
return temp_audio_filename
return audio_filename
class TTS_OOD:
def __init__(self, device):
@@ -294,7 +355,6 @@ class TTS_OOD:
self.hp = hp
def inference(self, inputs):
global temp_audio_filename
self.set_model_hparams()
key = ['ref_audio', 'text']
val = inputs.split(",")
@@ -302,20 +362,145 @@ class TTS_OOD:
wav = self.pipe.infer_once(inp)
wav *= 32767
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
temp_audio_filename = audio_filename
wavfile.write(temp_audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
wavfile.write(audio_filename, self.hp['audio_sample_rate'], wav.astype(np.int16))
print(
f"Processed GenerSpeech.run. Input text:{val[1]}. Input reference audio: {val[0]}. Output Audio_filename: {audio_filename}")
return temp_audio_filename
return audio_filename
class Inpaint:
def __init__(self, device):
print("Initializing Make-An-Audio-inpaint to %s" % device)
self.device = device
self.sampler = initialize_model('text_to_audio/Make_An_Audio_inpaint/configs/inpaint/txt2audio_args.yaml',
'text_to_audio/Make_An_Audio_inpaint/useful_ckpts/inpaint7_epoch00047.ckpt')
self.vocoder = VocoderBigVGAN('./vocoder/logs/bigv16k53w', device=device)
def make_batch_sd(self, mel, mask, num_samples=1):
mel = torch.from_numpy(mel)[None, None, ...].to(dtype=torch.float32)
mask = torch.from_numpy(mask)[None, None, ...].to(dtype=torch.float32)
masked_mel = (1 - mask) * mel
mel = mel * 2 - 1
mask = mask * 2 - 1
masked_mel = masked_mel * 2 - 1
batch = {
"mel": repeat(mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
"mask": repeat(mask.to(device=self.device), "1 ... -> n ...", n=num_samples),
"masked_mel": repeat(masked_mel.to(device=self.device), "1 ... -> n ...", n=num_samples),
}
return batch
def gen_mel(self, input_audio):
sr, ori_wav = input_audio
print(sr, ori_wav.shape, ori_wav)
ori_wav = ori_wav.astype(np.float32, order='C') / 32768.0 # order='C'是以C语言格式存储不用管
if len(ori_wav.shape) == 2: # stereo
ori_wav = librosa.to_mono(
ori_wav.T) # gradio load wav shape could be (wav_len,2) but librosa expects (2,wav_len)
print(sr, ori_wav.shape, ori_wav)
ori_wav = librosa.resample(ori_wav, orig_sr=sr, target_sr=SAMPLE_RATE)
mel_len, hop_size = 848, 256
input_len = mel_len * hop_size
if len(ori_wav) < input_len:
input_wav = np.pad(ori_wav, (0, mel_len * hop_size), constant_values=0)
else:
input_wav = ori_wav[:input_len]
mel = TRANSFORMS_16000(input_wav)
return mel
def show_mel_fn(self, input_audio):
crop_len = 500 # the full mel cannot be showed due to gradio's Image bug when using tool='sketch'
crop_mel = self.gen_mel(input_audio)[:, :crop_len]
color_mel = cmap_transform(crop_mel)
return Image.fromarray((color_mel * 255).astype(np.uint8))
def inpaint(self, batch, seed, ddim_steps, num_samples=1, W=512, H=512):
model = self.sampler.model
prng = np.random.RandomState(seed)
start_code = prng.randn(num_samples, model.first_stage_model.embed_dim, H // 8, W // 8)
start_code = torch.from_numpy(start_code).to(device=self.device, dtype=torch.float32)
c = model.get_first_stage_encoding(model.encode_first_stage(batch["masked_mel"]))
cc = torch.nn.functional.interpolate(batch["mask"],
size=c.shape[-2:])
c = torch.cat((c, cc), dim=1) # (b,c+1,h,w) 1 is mask
shape = (c.shape[1] - 1,) + c.shape[2:]
samples_ddim, _ = self.sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False)
x_samples_ddim = model.decode_first_stage(samples_ddim)
mask = batch["mask"] # [-1,1]
mel = torch.clamp((batch["mel"] + 1.0) / 2.0, min=0.0, max=1.0)
mask = torch.clamp((batch["mask"] + 1.0) / 2.0, min=0.0, max=1.0)
predicted_mel = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
inpainted = (1 - mask) * mel + mask * predicted_mel
inpainted = inpainted.cpu().numpy().squeeze()
inapint_wav = self.vocoder.vocode(inpainted)
return inpainted, inapint_wav
def predict(self, input_audio, mel_and_mask, ddim_steps, seed):
show_mel = np.array(mel_and_mask['image'].convert("L")) / 255 # 由于展示的mel只展示了一部分所以需要重新从音频生成mel
mask = np.array(mel_and_mask["mask"].convert("L")) / 255
mel_bins, mel_len = 80, 848
input_mel = self.gen_mel(input_audio)[:, :mel_len] # 由于展示的mel只展示了一部分所以需要重新从音频生成mel
mask = np.pad(mask, ((0, 0), (0, mel_len - mask.shape[1])), mode='constant',
constant_values=0) # 将mask填充到原来的mel的大小
print(mask.shape, input_mel.shape)
with torch.no_grad():
batch = make_batch_sd(input_mel, mask, device, num_samples=1)
inpainted, gen_wav = self.inpaint(
batch=batch,
seed=seed,
ddim_steps=ddim_steps,
num_samples=1,
H=mel_bins, W=mel_len
)
inpainted = inpainted[:, :show_mel.shape[1]]
color_mel = cmap_transform(inpainted)
input_len = int(input_audio[1].shape[0] * SAMPLE_RATE / input_audio[0])
gen_wav = (gen_wav * 32768).astype(np.int16)[:input_len]
return Image.fromarray((color_mel * 255).astype(np.uint8)), (SAMPLE_RATE, gen_wav)
class ASR:
def __init__(self, device):
print("Initializing Whisper to %s" % device)
self.device = device
self.model = whisper.load_model("base", device=device)
def inference(self, audio_path):
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(self.device)
_, probs = self.model.detect_language(mel)
options = whisper.DecodingOptions()
result = whisper.decode(self.model, mel, options)
return result.text
class ConversationBot:
def __init__(self):
print("Initializing AudioChatGPT")
self.llm = OpenAI(temperature=0)
self.t2i = T2I(device="cuda:0")
self.i2t = ImageCaptioning(device="cuda:1")
self.t2a = T2A(device="cuda:0")
self.t2s = T2S(device="cuda:2")
self.i2a = I2A(device="cuda:1")
self.asr = ASR(device="cuda:1")
self.t2s = T2S(device="cuda:0")
self.tts_ood = TTS_OOD(device="cuda:0")
self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')
@@ -323,6 +508,9 @@ class ConversationBot:
Tool(name="Generate Image From User Input Text", func=self.t2i.inference,
description="useful for when you want to generate an image from a user input text and it saved it to a file. like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. "),
Tool(name="Get Photo Description", func=self.i2t.inference,
description="useful for when you want to know what is inside the photo. receives image_path as input. "
"The input to this tool should be a string, representing the image_path. "),
Tool(name="Generate Audio From User Input Text", func=self.t2a.inference,
description="useful for when you want to generate an audio from a user input text and it saved it to a file."
"The input to this tool should be a string, representing the text used to generate audio."),
@@ -337,7 +525,16 @@ class ConversationBot:
"If Like: Generate a piece of singing voice, the input to this tool should be \"\" since there is no User Input Text, Note and Duration Sequence ."
"If Like: Generate a piece of singing voice. Text: xxx, Note: xxx, Duration: xxx. "
"Or Like: Generate a piece of singing voice. Text is xxx, note is xxx, duration is xxx."
"The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided.")]
"The input to this tool should be a comma seperated string of three, representing text, note and duration sequence since User Input Text, Note and Duration Sequence are all provided."),
Tool(name="Generate singing voice From User Input Text", func=self.t2s.inference,
description="useful for when you want to generate a piece of singing voice from its description."
"The input to this tool should be a comma seperated string of three, representing the text sequence and its corresponding note and duration sequence."),
Tool(name="Generate Audio From The Image", func=self.i2a.inference,
description="useful for when you want to generate an audio based on an image."
"The input to this tool should be a string, representing the image_path. "),
Tool(name="Get Audio Transcription", func=self.asr.inference,
description="useful for when you want to know the text content corresponding to this audio, receives audio_path as input."
"The input to this tool should be a string, representing the audio_path.")]
self.agent = initialize_agent(
self.tools,
self.llm,
@@ -347,65 +544,69 @@ class ConversationBot:
return_intermediate_steps=True,
agent_kwargs={'prefix': AUDIO_CHATGPT_PREFIX, 'format_instructions': AUDIO_CHATGPT_FORMAT_INSTRUCTIONS, 'suffix': AUDIO_CHATGPT_SUFFIX}, )
def run_file(self, file, state, txt):
if file.name.endswith('.wav') or file.name.endswith('.wav'):
return self.run_audio(file, state, txt)
else:
return self.run_image(file, state, txt)
def run_text(self, text, state):
print("===============Running run_text =============")
print("Inputs:", text, state)
print("======>Previous memory:\n %s" % self.agent.memory)
self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
res = self.agent({"input": text})
tool = res['intermediate_steps'][0][0].tool
if tool == "Generate Image From User Input Text":
print("======>Current memory:\n %s" % self.agent.memory)
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
state = state + [(text, response)]
print("Outputs:", state)
return state, state, None
print("======>Current memory:\n %s" % self.agent.memory)
response = re.sub('(audio/\S*wav)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
audio_filename = res['intermediate_steps'][0][1]
response = re.sub('(image/\S*png)', lambda m: f'![](/file={m.group(0)})*{m.group(0)}*', res['output'])
#response = res['output'] + f"<audio src=audio_filename controls=controls></audio>"
state = state + [(text, response)]
print("Outputs:", state)
return state, state
return state, state, audio_filename
def run_image(self, image, state, txt):
print("===============Running run_image =============")
print("Inputs:", image, state)
print("======>Previous memory:\n %s" % self.agent.memory)
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
print("======>Auto Resize Image...")
img = Image.open(image.name)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert('RGB')
img.save(image_filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
description = self.i2t.inference(image_filename)
Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
AI_prompt = "Received. "
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
print("======>Current memory:\n %s" % self.agent.memory)
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
print("Outputs:", state)
return state, state, f'{txt} {image_filename} '
def run_audio(self, audio, state, txt):
print("===============Running run_audio =============")
print("Inputs:", audio, state)
print("======>Previous memory:\n %s" % self.agent.memory)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
move_file(audio.name, audio_filename)
Human_prompt = "\nHuman: provide an reference audio named {}. You use tools to finish following tasks, " \
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(
audio_filename)
AI_prompt = "Received. "
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
print("======>Current memory:\n %s" % self.agent.memory)
state = state + [(f"![](/file={audio_filename})*{audio_filename}*", AI_prompt)]
print("Outputs:", state)
return state, state, f'{txt} {audio_filename} '
def run_image_or_audio(self, file, state, txt):
file_type = file.name[-3:]
if file_type == "wav":
print("===============Running run_audio =============")
print("Inputs:", file, state)
print("======>Previous memory:\n %s" % self.agent.memory)
audio_filename = os.path.join('audio', str(uuid.uuid4())[0:8] + ".wav")
print("======>Auto Resize Audio...")
audio_load = whisper.load_audio(file.name)
soundfile.write(audio_filename, audio_load, samplerate = 16000)
description = self.asr.inference(audio_filename)
Human_prompt = "\nHuman: provide an audio named {}. The description is: {}. This information helps you to understand this audio, but you should use tools to finish following tasks, " \
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(audio_filename, description)
AI_prompt = "Received. "
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
#state = state + [(f"<audio src=audio_filename controls=controls></audio>*{audio_filename}*", AI_prompt)]
state = state + [(f"*{audio_filename}*", AI_prompt)]
print("Outputs:", state)
return state, state, txt + ' ' + audio_filename + ' ', audio_filename
else:
print("===============Running run_image =============")
print("Inputs:", file, state)
print("======>Previous memory:\n %s" % self.agent.memory)
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
print("======>Auto Resize Image...")
img = Image.open(file.name)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert('RGB')
img.save(image_filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
description = self.i2t.inference(image_filename)
Human_prompt = "\nHuman: provide a figure named {}. The description is: {}. This information helps you to understand this image, but you should use tools to finish following tasks, " \
"rather than directly imagine from my description. If you understand, say \"Received\". \n".format(image_filename, description)
AI_prompt = "Received. "
self.agent.memory.buffer = self.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
print("======>Current memory:\n %s" % self.agent.memory)
state = state + [(f"![](/file={image_filename})*{image_filename}*", AI_prompt)]
print("Outputs:", state)
return state, state, txt + ' ' + image_filename + ' ', None
if __name__ == '__main__':
bot = ConversationBot()
@@ -416,18 +617,16 @@ if __name__ == '__main__':
state = gr.State([])
with gr.Row():
with gr.Column(scale=0.7):
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an audio").style(
container=False)
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter, or upload an image or audio").style(container=False)
with gr.Column(scale=0.15, min_width=0):
clear = gr.Button("Clear")
with gr.Column(scale=0.15, min_width=0):
btn = gr.UploadButton("Upload", file_types=["audio", "image"])
btn = gr.UploadButton("Upload", file_types=["image","audio"])
with gr.Column():
outaudio = gr.Audio()
txt.submit(bot.run_text, [txt, state], [chatbot, state, outaudio])
txt.submit(lambda: "", None, txt)
btn.upload(bot.run_file, [btn, state, txt], [chatbot, state, txt])
btn.upload(bot.run_image_or_audio, [btn, state, txt], [chatbot, state, txt, outaudio])
clear.click(bot.memory.clear)
clear.click(lambda: [], None, chatbot)
clear.click(lambda: [], None, state)