mirror of
https://github.com/guoyww/AnimateDiff.git
synced 2025-12-20 02:09:35 +01:00
301 lines
12 KiB
Python
301 lines
12 KiB
Python
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.modeling_utils import ModelMixin
|
|
from diffusers.utils import BaseOutput
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
|
|
|
from einops import rearrange, repeat
|
|
import pdb
|
|
|
|
@dataclass
|
|
class Transformer3DModelOutput(BaseOutput):
|
|
sample: torch.FloatTensor
|
|
|
|
|
|
if is_xformers_available():
|
|
import xformers
|
|
import xformers.ops
|
|
else:
|
|
xformers = None
|
|
|
|
|
|
class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 16,
|
|
attention_head_dim: int = 88,
|
|
in_channels: Optional[int] = None,
|
|
num_layers: int = 1,
|
|
dropout: float = 0.0,
|
|
norm_num_groups: int = 32,
|
|
cross_attention_dim: Optional[int] = None,
|
|
attention_bias: bool = False,
|
|
activation_fn: str = "geglu",
|
|
num_embeds_ada_norm: Optional[int] = None,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
|
|
unet_use_cross_frame_attention=None,
|
|
unet_use_temporal_attention=None,
|
|
):
|
|
super().__init__()
|
|
self.use_linear_projection = use_linear_projection
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
# Define input layers
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
|
if use_linear_projection:
|
|
self.proj_in = nn.Linear(in_channels, inner_dim)
|
|
else:
|
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
|
|
|
# Define transformers blocks
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
dropout=dropout,
|
|
cross_attention_dim=cross_attention_dim,
|
|
activation_fn=activation_fn,
|
|
num_embeds_ada_norm=num_embeds_ada_norm,
|
|
attention_bias=attention_bias,
|
|
only_cross_attention=only_cross_attention,
|
|
upcast_attention=upcast_attention,
|
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
|
unet_use_temporal_attention=unet_use_temporal_attention,
|
|
)
|
|
for d in range(num_layers)
|
|
]
|
|
)
|
|
|
|
# 4. Define output layers
|
|
if use_linear_projection:
|
|
self.proj_out = nn.Linear(in_channels, inner_dim)
|
|
else:
|
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
|
# Input
|
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
|
video_length = hidden_states.shape[2]
|
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
|
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
|
|
|
batch, channel, height, weight = hidden_states.shape
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
if not self.use_linear_projection:
|
|
hidden_states = self.proj_in(hidden_states)
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
|
else:
|
|
inner_dim = hidden_states.shape[1]
|
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
|
hidden_states = self.proj_in(hidden_states)
|
|
|
|
# Blocks
|
|
for block in self.transformer_blocks:
|
|
hidden_states = block(
|
|
hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
timestep=timestep,
|
|
video_length=video_length
|
|
)
|
|
|
|
# Output
|
|
if not self.use_linear_projection:
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
|
)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
else:
|
|
hidden_states = self.proj_out(hidden_states)
|
|
hidden_states = (
|
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
|
)
|
|
|
|
output = hidden_states + residual
|
|
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
|
if not return_dict:
|
|
return (output,)
|
|
|
|
return Transformer3DModelOutput(sample=output)
|
|
|
|
|
|
class BasicTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
dropout=0.0,
|
|
cross_attention_dim: Optional[int] = None,
|
|
activation_fn: str = "geglu",
|
|
num_embeds_ada_norm: Optional[int] = None,
|
|
attention_bias: bool = False,
|
|
only_cross_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
|
|
unet_use_cross_frame_attention = None,
|
|
unet_use_temporal_attention = None,
|
|
):
|
|
super().__init__()
|
|
self.only_cross_attention = only_cross_attention
|
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
|
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
|
self.unet_use_temporal_attention = unet_use_temporal_attention
|
|
|
|
# SC-Attn
|
|
assert unet_use_cross_frame_attention is not None
|
|
if unet_use_cross_frame_attention:
|
|
self.attn1 = SparseCausalAttention2D(
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
|
upcast_attention=upcast_attention,
|
|
)
|
|
else:
|
|
self.attn1 = CrossAttention(
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
)
|
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
|
|
|
# Cross-Attn
|
|
if cross_attention_dim is not None:
|
|
self.attn2 = CrossAttention(
|
|
query_dim=dim,
|
|
cross_attention_dim=cross_attention_dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
)
|
|
else:
|
|
self.attn2 = None
|
|
|
|
if cross_attention_dim is not None:
|
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
|
else:
|
|
self.norm2 = None
|
|
|
|
# Feed-forward
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
|
self.norm3 = nn.LayerNorm(dim)
|
|
|
|
# Temp-Attn
|
|
assert unet_use_temporal_attention is not None
|
|
if unet_use_temporal_attention:
|
|
self.attn_temp = CrossAttention(
|
|
query_dim=dim,
|
|
heads=num_attention_heads,
|
|
dim_head=attention_head_dim,
|
|
dropout=dropout,
|
|
bias=attention_bias,
|
|
upcast_attention=upcast_attention,
|
|
)
|
|
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
|
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
|
|
|
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
|
if not is_xformers_available():
|
|
print("Here is how to install it")
|
|
raise ModuleNotFoundError(
|
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
|
" xformers",
|
|
name="xformers",
|
|
)
|
|
elif not torch.cuda.is_available():
|
|
raise ValueError(
|
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
|
" available for GPU "
|
|
)
|
|
else:
|
|
try:
|
|
# Make sure we can run the memory efficient attention
|
|
_ = xformers.ops.memory_efficient_attention(
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
torch.randn((1, 2, 40), device="cuda"),
|
|
)
|
|
except Exception as e:
|
|
raise e
|
|
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
|
if self.attn2 is not None:
|
|
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
|
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
|
# SparseCausal-Attention
|
|
norm_hidden_states = (
|
|
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
|
)
|
|
|
|
# if self.only_cross_attention:
|
|
# hidden_states = (
|
|
# self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
|
# )
|
|
# else:
|
|
# hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
|
|
|
# pdb.set_trace()
|
|
if self.unet_use_cross_frame_attention:
|
|
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
|
else:
|
|
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states
|
|
|
|
if self.attn2 is not None:
|
|
# Cross-Attention
|
|
norm_hidden_states = (
|
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
|
)
|
|
hidden_states = (
|
|
self.attn2(
|
|
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
|
)
|
|
+ hidden_states
|
|
)
|
|
|
|
# Feed-forward
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
|
|
|
# Temporal-Attention
|
|
if self.unet_use_temporal_attention:
|
|
d = hidden_states.shape[1]
|
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
|
norm_hidden_states = (
|
|
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
|
)
|
|
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
|
|
|
return hidden_states
|