training script

This commit is contained in:
Yuwei Guo
2023-08-20 17:02:57 +08:00
parent e559802fef
commit e816747d66
8 changed files with 744 additions and 1 deletions

2
.gitignore vendored
View File

@@ -1,4 +1,6 @@
samples/
wandb/
outputs/
__pycache__/
models/StableDiffusion/stable-diffusion-v1-5
scripts/animate_inter.py

View File

@@ -63,7 +63,7 @@ Contributions are always welcome!! The <code>dev</code> branch is for community
</details>
## Setup for Inference
## Setups for Inference
### Prepare Environment
@@ -139,6 +139,35 @@ Then run the following commands:
python -m scripts.animate --config [path to the config file]
```
## Steps for Training
### Dataset
Before training, download the videos files and the `.csv` annotations of [WebVid10M](https://maxbain.com/webvid-dataset/) to the local mechine.
Note that our examplar training script requires all the videos to be saved in a single folder. You may change this by modifying `animatediff/data/dataset.py`.
### Configuration
After dataset preparations, update the below data paths in the config `.yaml` files in `configs/training/` folder:
```
train_data:
csv_path: [Replace with .csv Annotation File Path]
video_folder: [Replace with Video Folder Path]
sample_size: 256
```
Other training parameters (lr, epochs, validation settings, etc.) are also included in the config files.
### Training
To train motion modules
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/training.yaml
```
To finetune the unet's image layers
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/image_finetune.yaml
```
## Gradio Demo
We have created a Gradio demo to make AnimateDiff easier to use. To launch the demo, please run the following commands:
```

View File

@@ -0,0 +1,98 @@
import os, io, csv, math, random
import numpy as np
from einops import rearrange
from decord import VideoReader
import torch
import torchvision.transforms as transforms
from torch.utils.data.dataset import Dataset
from animatediff.utils.util import zero_rank_print
class WebVid10M(Dataset):
def __init__(
self,
csv_path, video_folder,
sample_size=256, sample_stride=4, sample_n_frames=16,
is_image=False,
):
zero_rank_print(f"loading annotations from {csv_path} ...")
with open(csv_path, 'r') as csvfile:
self.dataset = list(csv.DictReader(csvfile))
self.length = len(self.dataset)
zero_rank_print(f"data scale: {self.length}")
self.video_folder = video_folder
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.is_image = is_image
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.pixel_transforms = transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(sample_size[0]),
transforms.CenterCrop(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
def get_batch(self, idx):
video_dict = self.dataset[idx]
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4")
video_reader = VideoReader(video_dir)
video_length = len(video_reader)
if not self.is_image:
clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
start_idx = random.randint(0, video_length - clip_length)
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
else:
batch_index = [random.randint(0, video_length - 1)]
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
if self.is_image:
pixel_values = pixel_values[0]
return pixel_values, name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
pixel_values, name = self.get_batch(idx)
break
except Exception as e:
idx = random.randint(0, self.length-1)
pixel_values = self.pixel_transforms(pixel_values)
sample = dict(pixel_values=pixel_values, text=name)
return sample
if __name__ == "__main__":
from animatediff.utils.util import save_videos_grid
dataset = WebVid10M(
csv_path="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv",
video_folder="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val",
sample_size=256,
sample_stride=4, sample_n_frames=16,
is_image=True,
)
import pdb
pdb.set_trace()
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=16,)
for idx, batch in enumerate(dataloader):
print(batch["pixel_values"].shape, len(batch["text"]))
# for i in range(batch["pixel_values"].shape[0]):
# save_videos_grid(batch["pixel_values"][i:i+1].permute(0,2,1,3,4), os.path.join(".", f"{idx}-{i}.mp4"), rescale=True)

View File

@@ -5,11 +5,16 @@ from typing import Union
import torch
import torchvision
import torch.distributed as dist
from tqdm import tqdm
from einops import rearrange
def zero_rank_print(s):
if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s)
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []

View File

@@ -0,0 +1,48 @@
image_finetune: true
output_dir: "outputs"
pretrained_model_path: "models/StableDiffusion/stable-diffusion-v1-5"
noise_scheduler_kwargs:
num_train_timesteps: 1000
beta_start: 0.00085
beta_end: 0.012
beta_schedule: "scaled_linear"
steps_offset: 1
clip_sample: false
train_data:
csv_path: "/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv"
video_folder: "/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val"
sample_size: 256
validation_data:
prompts:
- "Snow rocky mountains peaks canyon. Snow blanketed rocky mountains surround and shadow deep canyons."
- "A drone view of celebration with Christma tree and fireworks, starry sky - background."
- "Robot dancing in times square."
- "Pacific coast, carmel by the sea ocean and waves."
num_inference_steps: 25
guidance_scale: 8.
trainable_modules:
- "."
unet_checkpoint_path: ""
learning_rate: 1.e-5
train_batch_size: 50
max_train_epoch: -1
max_train_steps: 100
checkpointing_epochs: -1
checkpointing_steps: 60
validation_steps: 5000
validation_steps_tuple: [2, 50]
global_seed: 42
mixed_precision_training: true
enable_xformers_memory_efficient_attention: True
is_debug: False

View File

@@ -0,0 +1,66 @@
image_finetune: false
output_dir: "outputs"
pretrained_model_path: "models/StableDiffusion/stable-diffusion-v1-5"
unet_additional_kwargs:
use_motion_module : true
motion_module_resolutions : [ 1,2,4,8 ]
unet_use_cross_frame_attention : false
unet_use_temporal_attention : false
motion_module_type: Vanilla
motion_module_kwargs:
num_attention_heads : 8
num_transformer_block : 1
attention_block_types : [ "Temporal_Self", "Temporal_Self" ]
temporal_position_encoding : true
temporal_position_encoding_max_len : 24
temporal_attention_dim_div : 1
zero_initialize : true
noise_scheduler_kwargs:
num_train_timesteps: 1000
beta_start: 0.00085
beta_end: 0.012
beta_schedule: "linear"
steps_offset: 1
clip_sample: false
train_data:
csv_path: "/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv"
video_folder: "/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val"
sample_size: 256
sample_stride: 4
sample_n_frames: 16
validation_data:
prompts:
- "Snow rocky mountains peaks canyon. Snow blanketed rocky mountains surround and shadow deep canyons."
- "A drone view of celebration with Christma tree and fireworks, starry sky - background."
- "Robot dancing in times square."
- "Pacific coast, carmel by the sea ocean and waves."
num_inference_steps: 25
guidance_scale: 8.
trainable_modules:
- "motion_modules."
unet_checkpoint_path: ""
learning_rate: 1.e-4
train_batch_size: 4
max_train_epoch: -1
max_train_steps: 100
checkpointing_epochs: -1
checkpointing_steps: 60
validation_steps: 5000
validation_steps_tuple: [2, 50]
global_seed: 42
mixed_precision_training: true
enable_xformers_memory_efficient_attention: True
is_debug: False

View File

@@ -14,8 +14,10 @@ dependencies:
- transformers==4.25.1
- xformers==0.0.16
- imageio==2.27.0
- decord==0.6.0
- gdown
- einops
- omegaconf
- safetensors
- gradio
- wandb

493
train.py Normal file
View File

@@ -0,0 +1,493 @@
import os
import math
import wandb
import random
import logging
import inspect
import argparse
import datetime
import subprocess
from pathlib import Path
from tqdm.auto import tqdm
from einops import rearrange
from omegaconf import OmegaConf
from safetensors import safe_open
from typing import Dict, Optional, Tuple
import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.optim.swa_utils import AveragedModel
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.pipelines import StableDiffusionPipeline
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version
from diffusers.utils.import_utils import is_xformers_available
import transformers
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.data.dataset import WebVid10M
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid, zero_rank_print
def init_dist(launcher="slurm", backend='nccl', port=29500, **kwargs):
"""Initializes distributed environment."""
if launcher == 'pytorch':
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
local_rank = rank % num_gpus
torch.cuda.set_device(local_rank)
dist.init_process_group(backend=backend, **kwargs)
elif launcher == 'slurm':
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
local_rank = proc_id % num_gpus
torch.cuda.set_device(local_rank)
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
port = os.environ.get('PORT', port)
os.environ['MASTER_PORT'] = str(port)
dist.init_process_group(backend=backend)
zero_rank_print(f"proc_id: {proc_id}; local_rank: {local_rank}; ntasks: {ntasks}; node_list: {node_list}; num_gpus: {num_gpus}; addr: {addr}; port: {port}")
else:
raise NotImplementedError(f'Not implemented launcher type: `{launcher}`!')
return local_rank
def main(
image_finetune: bool,
name: str,
use_wandb: bool,
launcher: str,
output_dir: str,
pretrained_model_path: str,
train_data: Dict,
validation_data: Dict,
cfg_random_null_text: bool = True,
cfg_random_null_text_ratio: float = 0.1,
unet_checkpoint_path: str = "",
unet_additional_kwargs: Dict = {},
ema_decay: float = 0.9999,
noise_scheduler_kwargs = None,
max_train_epoch: int = -1,
max_train_steps: int = 100,
validation_steps: int = 100,
validation_steps_tuple: Tuple = (-1,),
learning_rate: float = 3e-5,
scale_lr: bool = False,
lr_warmup_steps: int = 0,
lr_scheduler: str = "constant",
trainable_modules: Tuple[str] = (None, ),
num_workers: int = 32,
train_batch_size: int = 1,
adam_beta1: float = 0.9,
adam_beta2: float = 0.999,
adam_weight_decay: float = 1e-2,
adam_epsilon: float = 1e-08,
max_grad_norm: float = 1.0,
gradient_accumulation_steps: int = 1,
gradient_checkpointing: bool = False,
checkpointing_epochs: int = 5,
checkpointing_steps: int = -1,
mixed_precision_training: bool = True,
enable_xformers_memory_efficient_attention: bool = True,
global_seed: int = 42,
is_debug: bool = False,
):
check_min_version("0.10.0.dev0")
# Initialize distributed training
local_rank = init_dist(launcher=launcher)
global_rank = dist.get_rank()
num_processes = dist.get_world_size()
is_main_process = global_rank == 0
seed = global_seed + global_rank
torch.manual_seed(seed)
# Logging folder
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(output_dir, folder_name)
if is_debug and os.path.exists(output_dir):
os.system(f"rm -rf {output_dir}")
*_, config = inspect.getargvalues(inspect.currentframe())
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
if is_main_process and (not is_debug) and use_wandb:
run = wandb.init(project="animatediff", name=folder_name, config=config)
# Handle the output folder creation
if is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
if not image_finetune:
unet = UNet3DConditionModel.from_pretrained_2d(
pretrained_model_path, subfolder="unet",
unet_additional_kwargs=OmegaConf.to_container(unet_additional_kwargs)
)
else:
unet = UNet2DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
# Load pretrained unet weights
if unet_checkpoint_path != "":
zero_rank_print(f"from checkpoint: {unet_checkpoint_path}")
unet_checkpoint_path = torch.load(unet_checkpoint_path, map_location="cpu")
if "global_step" in unet_checkpoint_path: zero_rank_print(f"global_step: {unet_checkpoint_path['global_step']}")
state_dict = unet_checkpoint_path["state_dict"] if "state_dict" in unet_checkpoint_path else unet_checkpoint_path
m, u = unet.load_state_dict(state_dict, strict=False)
zero_rank_print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
assert len(u) == 0
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
# Set unet trainable parameters
unet.requires_grad_(False)
for name, param in unet.named_parameters():
for trainable_module_name in trainable_modules:
if trainable_module_name in name:
param.requires_grad = True
break
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters()))
optimizer = torch.optim.AdamW(
trainable_params,
lr=learning_rate,
betas=(adam_beta1, adam_beta2),
weight_decay=adam_weight_decay,
eps=adam_epsilon,
)
if is_main_process:
zero_rank_print(f"trainable params number: {len(trainable_params)}")
zero_rank_print(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Enable xformers
if enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable gradient checkpointing
if gradient_checkpointing:
unet.enable_gradient_checkpointing()
# Move models to GPU
vae.to(local_rank)
text_encoder.to(local_rank)
# Get the training dataset
train_dataset = WebVid10M(**train_data, is_image=image_finetune)
distributed_sampler = DistributedSampler(
train_dataset,
num_replicas=num_processes,
rank=global_rank,
shuffle=True,
seed=global_seed,
)
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=train_batch_size,
shuffle=False,
sampler=distributed_sampler,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
)
# Get the training iteration
if max_train_steps == -1:
assert max_train_epoch != -1
max_train_steps = max_train_epoch * len(train_dataloader)
if checkpointing_steps == -1:
assert checkpointing_epochs != -1
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
if scale_lr:
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * num_processes)
# Scheduler
lr_scheduler = get_scheduler(
lr_scheduler,
optimizer=optimizer,
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
num_training_steps=max_train_steps * gradient_accumulation_steps,
)
# Validation pipeline
if not image_finetune:
validation_pipeline = AnimationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler,
).to("cuda")
else:
validation_pipeline = StableDiffusionPipeline.from_pretrained(
pretrained_model_path,
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler, safety_checker=None,
)
validation_pipeline.enable_vae_slicing()
# DDP warpper
unet.to(local_rank)
unet = DDP(unet, device_ids=[local_rank], output_device=local_rank)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = train_batch_size * num_processes * gradient_accumulation_steps
if is_main_process:
logging.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataset)}")
logging.info(f" Num Epochs = {num_train_epochs}")
logging.info(f" Instantaneous batch size per device = {train_batch_size}")
logging.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logging.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
logging.info(f" Total optimization steps = {max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not is_main_process)
progress_bar.set_description("Steps")
# Support mixed-precision training
scaler = torch.cuda.amp.GradScaler() if mixed_precision_training else None
for epoch in range(first_epoch, num_train_epochs):
train_dataloader.sampler.set_epoch(epoch)
unet.train()
for step, batch in enumerate(train_dataloader):
if cfg_random_null_text:
batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']]
# Data batch sanity check
if epoch == first_epoch and step == 0:
pixel_values, texts = batch['pixel_values'].cpu(), batch['text']
if not image_finetune:
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w")
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
pixel_value = pixel_value[None, ...]
save_videos_grid(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{global_rank}-{idx}'}.gif", rescale=True)
else:
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)):
pixel_value = pixel_value / 2. + 0.5
torchvision.utils.save_image(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{global_rank}-{idx}'}.png")
### >>>> Training >>>> ###
# Convert videos to latent space
pixel_values = batch["pixel_values"].to(local_rank)
video_length = pixel_values.shape[1]
with torch.no_grad():
if not image_finetune:
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
latents = vae.encode(pixel_values).latent_dist
latents = latents.sample()
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
else:
latents = vae.encode(pixel_values).latent_dist
latents = latents.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
with torch.no_grad():
prompt_ids = tokenizer(
batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(latents.device)
encoder_hidden_states = text_encoder(prompt_ids)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
raise NotImplementedError
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
# Predict the noise residual and compute loss
# Mixed-precision training
with torch.cuda.amp.autocast(enabled=mixed_precision_training):
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
optimizer.zero_grad()
# Backpropagate
if mixed_precision_training:
scaler.scale(loss).backward()
""" >>> gradient clipping >>> """
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)
""" <<< gradient clipping <<< """
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
""" >>> gradient clipping >>> """
torch.nn.utils.clip_grad_norm_(unet.parameters(), max_grad_norm)
""" <<< gradient clipping <<< """
optimizer.step()
lr_scheduler.step()
progress_bar.update(1)
global_step += 1
### <<<< Training <<<< ###
# Wandb logging
if is_main_process and (not is_debug) and use_wandb:
wandb.log({"train_loss": loss.item()}, step=global_step)
# Save checkpoint
if is_main_process and (global_step % checkpointing_steps == 0 or step == len(train_dataloader) - 1):
save_path = os.path.join(output_dir, f"checkpoints")
state_dict = {
"epoch": epoch,
"global_step": global_step,
"state_dict": unet.state_dict(),
}
if step == len(train_dataloader) - 1:
torch.save(state_dict, os.path.join(save_path, f"checkpoint-epoch-{epoch+1}.ckpt"))
else:
torch.save(state_dict, os.path.join(save_path, f"checkpoint.ckpt"))
logging.info(f"Saved state to {save_path} (global_step: {global_step})")
# Periodically validation
if is_main_process and (global_step % validation_steps == 0 or global_step in validation_steps_tuple):
samples = []
generator = torch.Generator(device=latents.device)
generator.manual_seed(global_seed)
height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size
width = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size
prompts = validation_data.prompts[:2] if global_step < 1000 and (not image_finetune) else validation_data.prompts
for idx, prompt in enumerate(prompts):
if not image_finetune:
sample = validation_pipeline(
prompt,
generator = generator,
video_length = train_data.sample_n_frames,
height = height,
width = width,
**validation_data,
).videos
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif")
samples.append(sample)
else:
sample = validation_pipeline(
prompt,
generator = generator,
height = height,
width = width,
num_inference_steps = validation_data.get("num_inference_steps", 25),
guidance_scale = validation_data.get("guidance_scale", 8.),
).images[0]
sample = torchvision.transforms.functional.to_tensor(sample)
samples.append(sample)
if not image_finetune:
samples = torch.concat(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
save_videos_grid(samples, save_path)
else:
samples = torch.stack(samples)
save_path = f"{output_dir}/samples/sample-{global_step}.png"
torchvision.utils.save_image(samples, save_path, nrow=4)
logging.info(f"Saved samples to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="pytorch")
parser.add_argument("--wandb", action="store_true")
args = parser.parse_args()
name = Path(args.config).stem
config = OmegaConf.load(args.config)
main(name=name, launcher=args.launcher, use_wandb=args.wandb, **config)