fix gradio

This commit is contained in:
Yuwei
2024-07-17 08:09:36 +00:00
parent 465b00933e
commit d7ba643e9e

316
app.py
View File

@@ -17,16 +17,17 @@ from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid from animatediff.utils.util import save_videos_grid, load_weights, auto_download, MOTION_MODULES, BACKUP_DREAMBOOTH_MODELS
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora
import pdb
sample_idx = 0 sample_idx = 0
scheduler_dict = { scheduler_dict = {
"DDIM": DDIMScheduler,
"Euler": EulerDiscreteScheduler, "Euler": EulerDiscreteScheduler,
"PNDM": PNDMScheduler, "PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
} }
css = """ css = """
@@ -38,142 +39,160 @@ css = """
} }
""" """
PRETRAINED_SD = "runwayml/stable-diffusion-v1-5"
default_motion_module = "v3_sd15_mm.ckpt"
default_inference_config = "configs/inference/inference-v3.yaml"
default_dreambooth_model = "realisticVisionV60B1_v51VAE.safetensors"
default_prompt = "b&w photo of 42 y.o man in black clothes, bald, face, half body, body, high detailed skin, skin pores, coastline, overcast weather, wind, waves, 8k uhd, dslr, soft lighting, high quality, film grain, Fujifilm XT3"
default_n_prompt = "semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
default_seed = 8893659352891878017
device = "cuda" if torch.cuda.is_available() else "cpu"
class AnimateController: class AnimateController:
def __init__(self): def __init__(self):
# config dirs # config dirs
self.basedir = os.getcwd() self.basedir = os.getcwd()
self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion") self.stable_diffusion_dir = os.path.join(self.basedir, "models", "StableDiffusion")
self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module") self.motion_module_dir = os.path.join(self.basedir, "models", "Motion_Module")
self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA") self.personalized_model_dir = os.path.join(self.basedir, "models", "DreamBooth_LoRA")
self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S")) self.savedir = os.path.join(self.basedir, "samples", datetime.now().strftime("Gradio-%Y-%m-%dT%H-%M-%S"))
self.savedir_sample = os.path.join(self.savedir, "sample") self.savedir_sample = os.path.join(self.savedir, "sample")
os.makedirs(self.savedir, exist_ok=True) os.makedirs(self.savedir, exist_ok=True)
self.stable_diffusion_list = [] self.stable_diffusion_list = [PRETRAINED_SD]
self.motion_module_list = [] self.motion_module_list = MOTION_MODULES
self.personalized_model_list = [] self.personalized_model_list = BACKUP_DREAMBOOTH_MODELS
self.refresh_stable_diffusion()
self.refresh_motion_module()
self.refresh_personalized_model()
# config models # config models
self.tokenizer = None self.pipeline = None
self.text_encoder = None # self.lora_model_state_dict = {}
self.vae = None
self.unet = None
self.pipeline = None
self.lora_model_state_dict = {}
self.inference_config = OmegaConf.load("configs/inference/inference.yaml") self.refresh_stable_diffusion()
self.refresh_personalized_model()
# default setting
self.update_pipeline(
stable_diffusion_dropdown=PRETRAINED_SD,
motion_module_dropdown=default_motion_module,
base_model_dropdown=default_dreambooth_model,
sampler_dropdown="DDIM",
)
def refresh_stable_diffusion(self): def refresh_stable_diffusion(self):
self.stable_diffusion_list = glob(os.path.join(self.stable_diffusion_dir, "*/")) self.stable_diffusion_list = [PRETRAINED_SD] + glob(os.path.join(self.stable_diffusion_dir, "*/"))
def refresh_motion_module(self):
motion_module_list = glob(os.path.join(self.motion_module_dir, "*.ckpt"))
self.motion_module_list = [os.path.basename(p) for p in motion_module_list]
def refresh_personalized_model(self): def refresh_personalized_model(self):
personalized_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors")) personalized_model_list = glob(os.path.join(self.personalized_model_dir, "*.safetensors"))
self.personalized_model_list = [os.path.basename(p) for p in personalized_model_list] self.personalized_model_list = BACKUP_DREAMBOOTH_MODELS + [os.path.basename(p) for p in personalized_model_list if os.path.basename(p) not in BACKUP_DREAMBOOTH_MODELS]
def update_stable_diffusion(self, stable_diffusion_dropdown): # for dropdown update
self.tokenizer = CLIPTokenizer.from_pretrained(stable_diffusion_dropdown, subfolder="tokenizer") def update_pipeline(
self.text_encoder = CLIPTextModel.from_pretrained(stable_diffusion_dropdown, subfolder="text_encoder").cuda()
self.vae = AutoencoderKL.from_pretrained(stable_diffusion_dropdown, subfolder="vae").cuda()
self.unet = UNet3DConditionModel.from_pretrained_2d(stable_diffusion_dropdown, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(self.inference_config.unet_additional_kwargs)).cuda()
return gr.Dropdown.update()
def update_motion_module(self, motion_module_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
motion_module_dropdown = os.path.join(self.motion_module_dir, motion_module_dropdown)
motion_module_state_dict = torch.load(motion_module_dropdown, map_location="cpu")
missing, unexpected = self.unet.load_state_dict(motion_module_state_dict, strict=False)
assert len(unexpected) == 0
return gr.Dropdown.update()
def update_base_model(self, base_model_dropdown):
if self.unet is None:
gr.Info(f"Please select a pretrained model path.")
return gr.Dropdown.update(value=None)
else:
base_model_dropdown = os.path.join(self.personalized_model_dir, base_model_dropdown)
base_model_state_dict = {}
with safe_open(base_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
base_model_state_dict[key] = f.get_tensor(key)
converted_vae_checkpoint = convert_ldm_vae_checkpoint(base_model_state_dict, self.vae.config)
self.vae.load_state_dict(converted_vae_checkpoint)
converted_unet_checkpoint = convert_ldm_unet_checkpoint(base_model_state_dict, self.unet.config)
self.unet.load_state_dict(converted_unet_checkpoint, strict=False)
self.text_encoder = convert_ldm_clip_checkpoint(base_model_state_dict)
return gr.Dropdown.update()
def update_lora_model(self, lora_model_dropdown):
lora_model_dropdown = os.path.join(self.personalized_model_dir, lora_model_dropdown)
self.lora_model_state_dict = {}
if lora_model_dropdown == "none": pass
else:
with safe_open(lora_model_dropdown, framework="pt", device="cpu") as f:
for key in f.keys():
self.lora_model_state_dict[key] = f.get_tensor(key)
return gr.Dropdown.update()
def animate(
self, self,
stable_diffusion_dropdown, stable_diffusion_dropdown,
motion_module_dropdown, motion_module_dropdown,
base_model_dropdown, base_model_dropdown="",
lora_alpha_slider, lora_model_dropdown="none",
prompt_textbox, lora_alpha_dropdown="0.6",
negative_prompt_textbox, sampler_dropdown="DDIM",
sampler_dropdown, ):
sample_step_slider, if "v2" in motion_module_dropdown:
width_slider, inference_config = "configs/inference/inference-v2.yaml"
length_slider, elif "v3" in motion_module_dropdown:
height_slider, inference_config = "configs/inference/inference-v3.yaml"
cfg_scale_slider, else:
seed_textbox inference_config = "configs/inference/inference-v1.yaml"
):
if self.unet is None:
raise gr.Error(f"Please select a pretrained model path.")
if motion_module_dropdown == "":
raise gr.Error(f"Please select a motion module.")
if base_model_dropdown == "":
raise gr.Error(f"Please select a base DreamBooth model.")
if is_xformers_available(): self.unet.enable_xformers_memory_efficient_attention() unet = UNet3DConditionModel.from_pretrained_2d(
stable_diffusion_dropdown, subfolder="unet",
unet_additional_kwargs=OmegaConf.load(inference_config).unet_additional_kwargs
)
if is_xformers_available() and torch.cuda.is_available():
unet.enable_xformers_memory_efficient_attention()
noise_scheduler_cls = scheduler_dict[sampler_dropdown]
noise_scheduler_kwargs = OmegaConf.load(inference_config).noise_scheduler_kwargs
if noise_scheduler_cls == EulerDiscreteScheduler:
noise_scheduler_kwargs.pop("steps_offset")
noise_scheduler_kwargs.pop("clip_sample")
elif noise_scheduler_cls == PNDMScheduler:
noise_scheduler_kwargs.pop("clip_sample")
pipeline = AnimationPipeline( pipeline = AnimationPipeline(
vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, unet=unet,
scheduler=scheduler_dict[sampler_dropdown](**OmegaConf.to_container(self.inference_config.noise_scheduler_kwargs)) vae=AutoencoderKL.from_pretrained(stable_diffusion_dropdown, subfolder="vae"),
).to("cuda") text_encoder=CLIPTextModel.from_pretrained(stable_diffusion_dropdown, subfolder="text_encoder"),
tokenizer=CLIPTokenizer.from_pretrained(stable_diffusion_dropdown, subfolder="tokenizer"),
if self.lora_model_state_dict != {}: scheduler=noise_scheduler_cls(**noise_scheduler_kwargs),
pipeline = convert_lora(pipeline, self.lora_model_state_dict, alpha=lora_alpha_slider) )
pipeline.to("cuda") pipeline = load_weights(
pipeline,
motion_module_path=os.path.join(self.motion_module_dir, motion_module_dropdown),
dreambooth_model_path=os.path.join(self.personalized_model_dir, base_model_dropdown) if base_model_dropdown != "" else "",
lora_model_path=os.path.join(self.personalized_model_dir, lora_model_dropdown) if lora_model_dropdown != "none" else "",
lora_alpha=float(lora_alpha_dropdown),
)
if seed_textbox != -1 and seed_textbox != "": torch.manual_seed(int(seed_textbox)) pipeline.to(device)
else: torch.seed() self.pipeline = pipeline
print("done.")
return gr.Dropdown.update()
def update_pipeline_alpha(
self,
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown="",
lora_model_dropdown="none",
lora_alpha_dropdown="0.6",
sampler_dropdown="DDIM",
):
if lora_model_dropdown == "none":
return gr.Slider.update()
self.update_pipeline(
stable_diffusion_dropdown=stable_diffusion_dropdown,
motion_module_dropdown=motion_module_dropdown,
base_model_dropdown=base_model_dropdown,
lora_model_dropdown=lora_model_dropdown,
lora_alpha_dropdown=lora_alpha_dropdown,
sampler_dropdown=sampler_dropdown,
)
return gr.Slider.update()
@torch.no_grad()
def animate(
self,
prompt_textbox,
negative_prompt_textbox,
sampler_dropdown,
sample_step_slider,
width_slider,
length_slider,
height_slider,
cfg_scale_slider,
seed_textbox,
):
if int(seed_textbox) != -1:
torch.manual_seed(int(seed_textbox))
else:
torch.seed()
seed = torch.initial_seed() seed = torch.initial_seed()
sample = pipeline( sample = self.pipeline(
prompt_textbox, prompt_textbox,
negative_prompt = negative_prompt_textbox, negative_prompt = negative_prompt_textbox,
num_inference_steps = sample_step_slider, num_inference_steps = sample_step_slider,
guidance_scale = cfg_scale_slider, guidance_scale = cfg_scale_slider,
width = width_slider, width = width_slider,
height = height_slider, height = height_slider,
video_length = length_slider, video_length = length_slider,
).videos ).videos
save_sample_path = os.path.join(self.savedir_sample, f"{sample_idx}.mp4") save_sample_path = os.path.join(self.savedir_sample, f"{sample_idx}.mp4")
@@ -190,6 +209,7 @@ class AnimateController:
"video_length": length_slider, "video_length": length_slider,
"seed": seed "seed": seed
} }
json_str = json.dumps(sample_config, indent=4) json_str = json.dumps(sample_config, indent=4)
with open(os.path.join(self.savedir, "logs.json"), "a") as f: with open(os.path.join(self.savedir, "logs.json"), "a") as f:
f.write(json_str) f.write(json_str)
@@ -205,51 +225,39 @@ def ui():
with gr.Blocks(css=css) as demo: with gr.Blocks(css=css) as demo:
gr.Markdown( gr.Markdown(
""" """
# [AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning](https://arxiv.org/abs/2307.04725) # AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models without Specific Tuning
Yuwei Guo, Ceyuan Yang*, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, Bo Dai (*Corresponding Author)<br> Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, Bo Dai (Corresponding Author)<br>
[Arxiv Report](https://arxiv.org/abs/2307.04725) | [Project Page](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/) [Paper](https://arxiv.org/abs/2307.04725) | [Webpage](https://animatediff.github.io/) | [Github](https://github.com/guoyww/animatediff/)
""" """
) )
with gr.Column(variant="panel"): with gr.Column(variant="panel"):
gr.Markdown( gr.Markdown(
""" """
### 1. Model checkpoints (select pretrained model path first). ### 1. Model Checkpoints
""" """
) )
with gr.Row(): with gr.Row():
stable_diffusion_dropdown = gr.Dropdown( stable_diffusion_dropdown = gr.Dropdown(
label="Pretrained Model Path", label="Pretrained Model Path",
choices=controller.stable_diffusion_list, choices=controller.stable_diffusion_list,
value=PRETRAINED_SD,
interactive=True, interactive=True,
) )
stable_diffusion_dropdown.change(fn=controller.update_stable_diffusion, inputs=[stable_diffusion_dropdown], outputs=[stable_diffusion_dropdown])
stable_diffusion_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_stable_diffusion():
controller.refresh_stable_diffusion()
return gr.Dropdown.update(choices=controller.stable_diffusion_list)
stable_diffusion_refresh_button.click(fn=update_stable_diffusion, inputs=[], outputs=[stable_diffusion_dropdown])
with gr.Row(): with gr.Row():
motion_module_dropdown = gr.Dropdown( motion_module_dropdown = gr.Dropdown(
label="Select motion module", label="Select motion module",
choices=controller.motion_module_list, choices=controller.motion_module_list,
value=default_motion_module,
interactive=True, interactive=True,
) )
motion_module_dropdown.change(fn=controller.update_motion_module, inputs=[motion_module_dropdown], outputs=[motion_module_dropdown])
motion_module_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_motion_module():
controller.refresh_motion_module()
return gr.Dropdown.update(choices=controller.motion_module_list)
motion_module_refresh_button.click(fn=update_motion_module, inputs=[], outputs=[motion_module_dropdown])
base_model_dropdown = gr.Dropdown( base_model_dropdown = gr.Dropdown(
label="Select base Dreambooth model (required)", label="Select base Dreambooth model (required)",
choices=controller.personalized_model_list, choices=controller.personalized_model_list,
value=default_dreambooth_model,
interactive=True, interactive=True,
) )
base_model_dropdown.change(fn=controller.update_base_model, inputs=[base_model_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown = gr.Dropdown( lora_model_dropdown = gr.Dropdown(
label="Select LoRA model (optional)", label="Select LoRA model (optional)",
@@ -257,18 +265,24 @@ def ui():
value="none", value="none",
interactive=True, interactive=True,
) )
lora_model_dropdown.change(fn=controller.update_lora_model, inputs=[lora_model_dropdown], outputs=[lora_model_dropdown])
lora_alpha_slider = gr.Slider(label="LoRA alpha", value=0.8, minimum=0, maximum=2, interactive=True) lora_alpha_dropdown = gr.Dropdown(
label="LoRA alpha",
choices=["0.", "0.2", "0.4", "0.6", "0.8", "1.0"],
value="0.6",
interactive=True,
)
personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton") personalized_refresh_button = gr.Button(value="\U0001F503", elem_classes="toolbutton")
def update_personalized_model(): def update_personalized_model():
controller.refresh_stable_diffusion()
controller.refresh_personalized_model() controller.refresh_personalized_model()
return [ return [
gr.Dropdown.update(choices=controller.stable_diffusion_list),
gr.Dropdown.update(choices=controller.personalized_model_list), gr.Dropdown.update(choices=controller.personalized_model_list),
gr.Dropdown.update(choices=["none"] + controller.personalized_model_list) gr.Dropdown.update(choices=["none"] + controller.personalized_model_list)
] ]
personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[base_model_dropdown, lora_model_dropdown]) personalized_refresh_button.click(fn=update_personalized_model, inputs=[], outputs=[stable_diffusion_dropdown, base_model_dropdown, lora_model_dropdown])
with gr.Column(variant="panel"): with gr.Column(variant="panel"):
gr.Markdown( gr.Markdown(
@@ -276,37 +290,39 @@ def ui():
### 2. Configs for AnimateDiff. ### 2. Configs for AnimateDiff.
""" """
) )
prompt_textbox = gr.Textbox(label="Prompt", lines=2, value=default_prompt)
prompt_textbox = gr.Textbox(label="Prompt", lines=2) negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2, value=default_n_prompt)
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=2)
with gr.Row().style(equal_height=False): with gr.Row().style(equal_height=False):
with gr.Column(): with gr.Column():
with gr.Row(): with gr.Row():
sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0]) sampler_dropdown = gr.Dropdown(label="Sampling method", choices=list(scheduler_dict.keys()), value=list(scheduler_dict.keys())[0])
sample_step_slider = gr.Slider(label="Sampling steps", value=25, minimum=10, maximum=100, step=1) sample_step_slider = gr.Slider(label="Sampling steps", value=25, minimum=10, maximum=100, step=1)
width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64) width_slider = gr.Slider(label="Width", value=512, minimum=256, maximum=1024, step=64)
height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64) height_slider = gr.Slider(label="Height", value=512, minimum=256, maximum=1024, step=64)
length_slider = gr.Slider(label="Animation length", value=16, minimum=8, maximum=24, step=1) length_slider = gr.Slider(label="Animation length (default: 16)", value=16, minimum=8, maximum=24, step=1)
cfg_scale_slider = gr.Slider(label="CFG Scale", value=7.5, minimum=0, maximum=20) cfg_scale_slider = gr.Slider(label="CFG Scale", value=8.0, minimum=0, maximum=20)
with gr.Row(): with gr.Row():
seed_textbox = gr.Textbox(label="Seed", value=-1) seed_textbox = gr.Textbox(label="Seed (-1 for random seed)", value=default_seed)
seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton")
seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox]) seed_button.click(fn=lambda: gr.Textbox.update(value=random.randint(1, 1e8)), inputs=[], outputs=[seed_textbox])
generate_button = gr.Button(value="Generate", variant='primary') generate_button = gr.Button(value="Generate", variant='primary')
result_video = gr.Video(label="Generated Animation", interactive=False) result_video = gr.Video(label="Generated Animation", interactive=False)
# update method
stable_diffusion_dropdown.change(fn=controller.update_pipeline, inputs=[stable_diffusion_dropdown, motion_module_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_dropdown, sampler_dropdown], outputs=[stable_diffusion_dropdown])
motion_module_dropdown.change(fn=controller.update_pipeline, inputs=[stable_diffusion_dropdown, motion_module_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_dropdown, sampler_dropdown], outputs=[motion_module_dropdown])
base_model_dropdown.change(fn=controller.update_pipeline, inputs=[stable_diffusion_dropdown, motion_module_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_dropdown, sampler_dropdown], outputs=[base_model_dropdown])
lora_model_dropdown.change(fn=controller.update_pipeline, inputs=[stable_diffusion_dropdown, motion_module_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_dropdown, sampler_dropdown], outputs=[lora_model_dropdown])
lora_alpha_dropdown.change(fn=controller.update_pipeline_alpha, inputs=[stable_diffusion_dropdown, motion_module_dropdown, base_model_dropdown, lora_model_dropdown, lora_alpha_dropdown, sampler_dropdown], outputs=[lora_alpha_dropdown])
generate_button.click( generate_button.click(
fn=controller.animate, fn=controller.animate,
inputs=[ inputs=[
stable_diffusion_dropdown,
motion_module_dropdown,
base_model_dropdown,
lora_alpha_slider,
prompt_textbox, prompt_textbox,
negative_prompt_textbox, negative_prompt_textbox,
sampler_dropdown, sampler_dropdown,