update readme

This commit is contained in:
limbo0000
2023-11-03 09:49:15 +08:00
parent ae7c52c8d1
commit d13b97cbde
3 changed files with 223 additions and 213 deletions

231
README.md
View File

@@ -19,6 +19,8 @@ Bo Dai
[![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/Masbfca/AnimateDiff) [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/Masbfca/AnimateDiff)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/guoyww/AnimateDiff) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-yellow)](https://huggingface.co/spaces/guoyww/AnimateDiff)
## Next
One with better controllability and quality is coming soon. Stay tuned.
## Features ## Features
- **[2023/09/25]** Release **MotionLoRA** and its model zoo, **enabling camera movement controls**! Please download the MotionLoRA models (**74 MB per model**, available at [Google Drive](https://drive.google.com/drive/folders/1EqLC65eR1-W-sGD0Im7fkED6c8GkiNFI?usp=sharing) / [HuggingFace](https://huggingface.co/guoyww/animatediff) / [CivitAI](https://civitai.com/models/108836/animatediff-motion-modules) ) and save them to the `models/MotionLoRA` folder. Example: - **[2023/09/25]** Release **MotionLoRA** and its model zoo, **enabling camera movement controls**! Please download the MotionLoRA models (**74 MB per model**, available at [Google Drive](https://drive.google.com/drive/folders/1EqLC65eR1-W-sGD0Im7fkED6c8GkiNFI?usp=sharing) / [HuggingFace](https://huggingface.co/guoyww/animatediff) / [CivitAI](https://civitai.com/models/108836/animatediff-motion-modules) ) and save them to the `models/MotionLoRA` folder. Example:
@@ -78,12 +80,23 @@ Bo Dai
</tr> </tr>
</table> </table>
- GPU Memory Optimization, ~12GB VRAM to inference - GPU Memory Optimization, ~12GB VRAM to inference
- User Interface:
## Quick Demo
User Interface developed by community:
- A1111 Extension [sd-webui-animatediff](https://github.com/continue-revolution/sd-webui-animatediff) (by [@continue-revolution](https://github.com/continue-revolution)) - A1111 Extension [sd-webui-animatediff](https://github.com/continue-revolution/sd-webui-animatediff) (by [@continue-revolution](https://github.com/continue-revolution))
- ComfyUI Extension [ComfyUI-AnimateDiff-Evolved](https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved) (by [@Kosinkadink](https://github.com/Kosinkadink)) - ComfyUI Extension [ComfyUI-AnimateDiff-Evolved](https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved) (by [@Kosinkadink](https://github.com/Kosinkadink))
- [Gradio](#gradio-demo)
- Google Colab: [Colab](https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb) (by [@camenduru](https://github.com/camenduru)) - Google Colab: [Colab](https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb) (by [@camenduru](https://github.com/camenduru))
We also create a Gradio demo to make AnimateDiff easier to use. To launch the demo, please run the following commands:
```
conda activate animatediff
python app.py
```
By default, the demo will run at `localhost:7860`.
<br><img src="__assets__/figs/gradio.jpg" style="width: 50em; margin-top: 1em">
## Model Zoo ## Model Zoo
<details open> <details open>
@@ -151,219 +164,11 @@ We totally agree that animating a given image is an appealing feature, which we
Contributions are always welcome!! The <code>dev</code> branch is for community contributions. As for the main branch, we would like to align it with the original technical report :) Contributions are always welcome!! The <code>dev</code> branch is for community contributions. As for the main branch, we would like to align it with the original technical report :)
</details> </details>
## Training and inference
## Setups for Inference Please refer to [ANIMATEDIFF](./__assets__/docs/animatediff.md) for the detailed setup.
### Prepare Environment
***We updated our inference code with xformers and a sequential decoding trick. Now AnimateDiff takes only ~12GB VRAM to inference, and run on a single RTX3090 !!***
```
git clone https://github.com/guoyww/AnimateDiff.git
cd AnimateDiff
conda env create -f environment.yaml
conda activate animatediff
```
### Download Base T2I & Motion Module Checkpoints
We provide two versions of our Motion Module, which are trained on stable-diffusion-v1-4 and finetuned on v1-5 seperately.
It's recommanded to try both of them for best results.
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
bash download_bashscripts/0-MotionModule.sh
```
You may also directly download the motion module checkpoints from [Google Drive](https://drive.google.com/drive/folders/1EqLC65eR1-W-sGD0Im7fkED6c8GkiNFI?usp=sharing) / [HuggingFace](https://huggingface.co/guoyww/animatediff) / [CivitAI](https://civitai.com/models/108836/animatediff-motion-modules), then put them in `models/Motion_Module/` folder.
### Prepare Personalize T2I
Here we provide inference configs for 6 demo T2I on CivitAI.
You may run the following bash scripts to download these checkpoints.
```
bash download_bashscripts/1-ToonYou.sh
bash download_bashscripts/2-Lyriel.sh
bash download_bashscripts/3-RcnzCartoon.sh
bash download_bashscripts/4-MajicMix.sh
bash download_bashscripts/5-RealisticVision.sh
bash download_bashscripts/6-Tusun.sh
bash download_bashscripts/7-FilmVelvia.sh
bash download_bashscripts/8-GhibliBackground.sh
```
### Inference
After downloading the above peronalized T2I checkpoints, run the following commands to generate animations. The results will automatically be saved to `samples/` folder.
```
python -m scripts.animate --config configs/prompts/1-ToonYou.yaml
python -m scripts.animate --config configs/prompts/2-Lyriel.yaml
python -m scripts.animate --config configs/prompts/3-RcnzCartoon.yaml
python -m scripts.animate --config configs/prompts/4-MajicMix.yaml
python -m scripts.animate --config configs/prompts/5-RealisticVision.yaml
python -m scripts.animate --config configs/prompts/6-Tusun.yaml
python -m scripts.animate --config configs/prompts/7-FilmVelvia.yaml
python -m scripts.animate --config configs/prompts/8-GhibliBackground.yaml
```
To generate animations with a new DreamBooth/LoRA model, you may create a new config `.yaml` file in the following format:
```
NewModel:
inference_config: "[path to motion module config file]"
motion_module:
- "models/Motion_Module/mm_sd_v14.ckpt"
- "models/Motion_Module/mm_sd_v15.ckpt"
motion_module_lora_configs:
- path: "[path to MotionLoRA model]"
alpha: 1.0
- ...
dreambooth_path: "[path to your DreamBooth model .safetensors file]"
lora_model_path: "[path to your LoRA model .safetensors file, leave it empty string if not needed]"
steps: 25
guidance_scale: 7.5
prompt:
- "[positive prompt]"
n_prompt:
- "[negative prompt]"
```
Then run the following commands:
```
python -m scripts.animate --config [path to the config file]
```
## Steps for Training
### Dataset
Before training, download the videos files and the `.csv` annotations of [WebVid10M](https://maxbain.com/webvid-dataset/) to the local mechine.
Note that our examplar training script requires all the videos to be saved in a single folder. You may change this by modifying `animatediff/data/dataset.py`.
### Configuration
After dataset preparations, update the below data paths in the config `.yaml` files in `configs/training/` folder:
```
train_data:
csv_path: [Replace with .csv Annotation File Path]
video_folder: [Replace with Video Folder Path]
sample_size: 256
```
Other training parameters (lr, epochs, validation settings, etc.) are also included in the config files.
### Training
To train motion modules
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/training.yaml
```
To finetune the unet's image layers
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/image_finetune.yaml
```
## Gradio Demo
We have created a Gradio demo to make AnimateDiff easier to use. To launch the demo, please run the following commands:
```
conda activate animatediff
python app.py
```
By default, the demo will run at `localhost:7860`.
<br><img src="__assets__/figs/gradio.jpg" style="width: 50em; margin-top: 1em">
## Gallery ## Gallery
Here we demonstrate several best results we found in our experiments. We collect several generated results in [GALLERY](./__assets__/docs/gallery.md).
<table class="center">
<tr>
<td><img src="__assets__/animations/model_01/01.gif"></td>
<td><img src="__assets__/animations/model_01/02.gif"></td>
<td><img src="__assets__/animations/model_01/03.gif"></td>
<td><img src="__assets__/animations/model_01/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/30240/toonyou">ToonYou</a></p>
<table>
<tr>
<td><img src="__assets__/animations/model_02/01.gif"></td>
<td><img src="__assets__/animations/model_02/02.gif"></td>
<td><img src="__assets__/animations/model_02/03.gif"></td>
<td><img src="__assets__/animations/model_02/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/4468/counterfeit-v30">Counterfeit V3.0</a></p>
<table>
<tr>
<td><img src="__assets__/animations/model_03/01.gif"></td>
<td><img src="__assets__/animations/model_03/02.gif"></td>
<td><img src="__assets__/animations/model_03/03.gif"></td>
<td><img src="__assets__/animations/model_03/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/4201/realistic-vision-v20">Realistic Vision V2.0</a></p>
<table>
<tr>
<td><img src="__assets__/animations/model_04/01.gif"></td>
<td><img src="__assets__/animations/model_04/02.gif"></td>
<td><img src="__assets__/animations/model_04/03.gif"></td>
<td><img src="__assets__/animations/model_04/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model <a href="https://civitai.com/models/43331/majicmix-realistic">majicMIX Realistic</a></p>
<table>
<tr>
<td><img src="__assets__/animations/model_05/01.gif"></td>
<td><img src="__assets__/animations/model_05/02.gif"></td>
<td><img src="__assets__/animations/model_05/03.gif"></td>
<td><img src="__assets__/animations/model_05/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/66347/rcnz-cartoon-3d">RCNZ Cartoon</a></p>
<table>
<tr>
<td><img src="__assets__/animations/model_06/01.gif"></td>
<td><img src="__assets__/animations/model_06/02.gif"></td>
<td><img src="__assets__/animations/model_06/03.gif"></td>
<td><img src="__assets__/animations/model_06/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/33208/filmgirl-film-grain-lora-and-loha">FilmVelvia</a></p>
#### Community Cases
Here are some samples contributed by the community artists. Create a Pull Request if you would like to show your results here😚.
<table>
<tr>
<td><img src="__assets__/animations/model_07/init.jpg"></td>
<td><img src="__assets__/animations/model_07/01.gif"></td>
<td><img src="__assets__/animations/model_07/02.gif"></td>
<td><img src="__assets__/animations/model_07/03.gif"></td>
<td><img src="__assets__/animations/model_07/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">
Character Model<a href="https://civitai.com/models/13237/genshen-impact-yoimiya">Yoimiya</a>
(with an initial reference image, see <a href="https://github.com/talesofai/AnimateDiff">WIP fork</a> for the extended implementation.)
<table>
<tr>
<td><img src="__assets__/animations/model_08/01.gif"></td>
<td><img src="__assets__/animations/model_08/02.gif"></td>
<td><img src="__assets__/animations/model_08/03.gif"></td>
<td><img src="__assets__/animations/model_08/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">
Character Model<a href="https://civitai.com/models/9850/paimon-genshin-impact">Paimon</a>;
Pose Model<a href="https://civitai.com/models/107295/or-holdingsign">Hold Sign</a></p>
## BibTeX ## BibTeX
``` ```

View File

@@ -0,0 +1,112 @@
# AnimateDiff: training and inference setup
## Setups for Inference
### Prepare Environment
***We updated our inference code with xformers and a sequential decoding trick. Now AnimateDiff takes only ~12GB VRAM to inference, and run on a single RTX3090 !!***
```
git clone https://github.com/guoyww/AnimateDiff.git
cd AnimateDiff
conda env create -f environment.yaml
conda activate animatediff
```
### Download Base T2I & Motion Module Checkpoints
We provide two versions of our Motion Module, which are trained on stable-diffusion-v1-4 and finetuned on v1-5 seperately.
It's recommanded to try both of them for best results.
```
git lfs install
git clone https://huggingface.co/runwayml/stable-diffusion-v1-5 models/StableDiffusion/
bash download_bashscripts/0-MotionModule.sh
```
You may also directly download the motion module checkpoints from [Google Drive](https://drive.google.com/drive/folders/1EqLC65eR1-W-sGD0Im7fkED6c8GkiNFI?usp=sharing) / [HuggingFace](https://huggingface.co/guoyww/animatediff) / [CivitAI](https://civitai.com/models/108836/animatediff-motion-modules), then put them in `models/Motion_Module/` folder.
### Prepare Personalize T2I
Here we provide inference configs for 6 demo T2I on CivitAI.
You may run the following bash scripts to download these checkpoints.
```
bash download_bashscripts/1-ToonYou.sh
bash download_bashscripts/2-Lyriel.sh
bash download_bashscripts/3-RcnzCartoon.sh
bash download_bashscripts/4-MajicMix.sh
bash download_bashscripts/5-RealisticVision.sh
bash download_bashscripts/6-Tusun.sh
bash download_bashscripts/7-FilmVelvia.sh
bash download_bashscripts/8-GhibliBackground.sh
```
### Inference
After downloading the above peronalized T2I checkpoints, run the following commands to generate animations. The results will automatically be saved to `samples/` folder.
```
python -m scripts.animate --config configs/prompts/1-ToonYou.yaml
python -m scripts.animate --config configs/prompts/2-Lyriel.yaml
python -m scripts.animate --config configs/prompts/3-RcnzCartoon.yaml
python -m scripts.animate --config configs/prompts/4-MajicMix.yaml
python -m scripts.animate --config configs/prompts/5-RealisticVision.yaml
python -m scripts.animate --config configs/prompts/6-Tusun.yaml
python -m scripts.animate --config configs/prompts/7-FilmVelvia.yaml
python -m scripts.animate --config configs/prompts/8-GhibliBackground.yaml
```
To generate animations with a new DreamBooth/LoRA model, you may create a new config `.yaml` file in the following format:
```
NewModel:
inference_config: "[path to motion module config file]"
motion_module:
- "models/Motion_Module/mm_sd_v14.ckpt"
- "models/Motion_Module/mm_sd_v15.ckpt"
motion_module_lora_configs:
- path: "[path to MotionLoRA model]"
alpha: 1.0
- ...
dreambooth_path: "[path to your DreamBooth model .safetensors file]"
lora_model_path: "[path to your LoRA model .safetensors file, leave it empty string if not needed]"
steps: 25
guidance_scale: 7.5
prompt:
- "[positive prompt]"
n_prompt:
- "[negative prompt]"
```
Then run the following commands:
```
python -m scripts.animate --config [path to the config file]
```
## Steps for Training
### Dataset
Before training, download the videos files and the `.csv` annotations of [WebVid10M](https://maxbain.com/webvid-dataset/) to the local mechine.
Note that our examplar training script requires all the videos to be saved in a single folder. You may change this by modifying `animatediff/data/dataset.py`.
### Configuration
After dataset preparations, update the below data paths in the config `.yaml` files in `configs/training/` folder:
```
train_data:
csv_path: [Replace with .csv Annotation File Path]
video_folder: [Replace with Video Folder Path]
sample_size: 256
```
Other training parameters (lr, epochs, validation settings, etc.) are also included in the config files.
### Training
To train motion modules
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/training.yaml
```
To finetune the unet's image layers
```
torchrun --nnodes=1 --nproc_per_node=1 train.py --config configs/training/image_finetune.yaml
```

View File

@@ -0,0 +1,93 @@
# Gallery
Here we demonstrate several best results we found in our experiments.
<table class="center">
<tr>
<td><img src="../animations/model_01/01.gif"></td>
<td><img src="../animations/model_01/02.gif"></td>
<td><img src="../animations/model_01/03.gif"></td>
<td><img src="../animations/model_01/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/30240/toonyou">ToonYou</a></p>
<table>
<tr>
<td><img src="../animations/model_02/01.gif"></td>
<td><img src="../animations/model_02/02.gif"></td>
<td><img src="../animations/model_02/03.gif"></td>
<td><img src="../animations/model_02/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/4468/counterfeit-v30">Counterfeit V3.0</a></p>
<table>
<tr>
<td><img src="../animations/model_03/01.gif"></td>
<td><img src="../animations/model_03/02.gif"></td>
<td><img src="../animations/model_03/03.gif"></td>
<td><img src="../animations/model_03/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/4201/realistic-vision-v20">Realistic Vision V2.0</a></p>
<table>
<tr>
<td><img src="../animations/model_04/01.gif"></td>
<td><img src="../animations/model_04/02.gif"></td>
<td><img src="../animations/model_04/03.gif"></td>
<td><img src="../animations/model_04/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model <a href="https://civitai.com/models/43331/majicmix-realistic">majicMIX Realistic</a></p>
<table>
<tr>
<td><img src="../animations/model_05/01.gif"></td>
<td><img src="../animations/model_05/02.gif"></td>
<td><img src="../animations/model_05/03.gif"></td>
<td><img src="../animations/model_05/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/66347/rcnz-cartoon-3d">RCNZ Cartoon</a></p>
<table>
<tr>
<td><img src="../animations/model_06/01.gif"></td>
<td><img src="../animations/model_06/02.gif"></td>
<td><img src="../animations/model_06/03.gif"></td>
<td><img src="../animations/model_06/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">Model<a href="https://civitai.com/models/33208/filmgirl-film-grain-lora-and-loha">FilmVelvia</a></p>
#### Community Cases
Here are some samples contributed by the community artists. Create a Pull Request if you would like to show your results here😚.
<table>
<tr>
<td><img src="../animations/model_07/init.jpg"></td>
<td><img src="../animations/model_07/01.gif"></td>
<td><img src="../animations/model_07/02.gif"></td>
<td><img src="../animations/model_07/03.gif"></td>
<td><img src="../animations/model_07/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">
Character Model<a href="https://civitai.com/models/13237/genshen-impact-yoimiya">Yoimiya</a>
(with an initial reference image, see <a href="https://github.com/talesofai/AnimateDiff">WIP fork</a> for the extended implementation.)
<table>
<tr>
<td><img src="../animations/model_08/01.gif"></td>
<td><img src="../animations/model_08/02.gif"></td>
<td><img src="../animations/model_08/03.gif"></td>
<td><img src="../animations/model_08/04.gif"></td>
</tr>
</table>
<p style="margin-left: 2em; margin-top: -1em">
Character Model<a href="https://civitai.com/models/9850/paimon-genshin-impact">Paimon</a>;
Pose Model<a href="https://civitai.com/models/107295/or-holdingsign">Hold Sign</a></p>