mirror of
https://github.com/guoyww/AnimateDiff.git
synced 2025-12-16 16:38:01 +01:00
support sparsectrl
This commit is contained in:
@@ -123,7 +123,7 @@ class ResnetBlock3D(nn.Module):
|
||||
time_embedding_norm="default",
|
||||
output_scale_factor=1.0,
|
||||
use_in_shortcut=None,
|
||||
use_inflated_groupnorm=None,
|
||||
use_inflated_groupnorm=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.pre_norm = pre_norm
|
||||
|
||||
587
animatediff/models/sparse_controlnet.py
Normal file
587
animatediff/models/sparse_controlnet.py
Normal file
@@ -0,0 +1,587 @@
|
||||
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Changes were made to this source code by Yuwei Guo.
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import BaseOutput, logging
|
||||
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
||||
from diffusers.modeling_utils import ModelMixin
|
||||
|
||||
|
||||
from .unet_blocks import (
|
||||
CrossAttnDownBlock3D,
|
||||
DownBlock3D,
|
||||
UNetMidBlock3DCrossAttn,
|
||||
get_down_block,
|
||||
)
|
||||
from einops import repeat, rearrange
|
||||
from .resnet import InflatedConv3d
|
||||
|
||||
from diffusers.models.unet_2d_condition import UNet2DConditionModel
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class SparseControlNetOutput(BaseOutput):
|
||||
down_block_res_samples: Tuple[torch.Tensor]
|
||||
mid_block_res_sample: torch.Tensor
|
||||
|
||||
|
||||
class SparseControlNetConditioningEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
conditioning_embedding_channels: int,
|
||||
conditioning_channels: int = 3,
|
||||
block_out_channels: Tuple[int] = (16, 32, 96, 256),
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.conv_in = InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
|
||||
|
||||
self.blocks = nn.ModuleList([])
|
||||
|
||||
for i in range(len(block_out_channels) - 1):
|
||||
channel_in = block_out_channels[i]
|
||||
channel_out = block_out_channels[i + 1]
|
||||
self.blocks.append(InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1))
|
||||
self.blocks.append(InflatedConv3d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
|
||||
|
||||
self.conv_out = zero_module(
|
||||
InflatedConv3d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
|
||||
)
|
||||
|
||||
def forward(self, conditioning):
|
||||
embedding = self.conv_in(conditioning)
|
||||
embedding = F.silu(embedding)
|
||||
|
||||
for block in self.blocks:
|
||||
embedding = block(embedding)
|
||||
embedding = F.silu(embedding)
|
||||
|
||||
embedding = self.conv_out(embedding)
|
||||
|
||||
return embedding
|
||||
|
||||
|
||||
class SparseControlNetModel(ModelMixin, ConfigMixin):
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int = 4,
|
||||
conditioning_channels: int = 3,
|
||||
flip_sin_to_cos: bool = True,
|
||||
freq_shift: int = 0,
|
||||
down_block_types: Tuple[str] = (
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"CrossAttnDownBlock2D",
|
||||
"DownBlock2D",
|
||||
),
|
||||
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
||||
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
||||
layers_per_block: int = 2,
|
||||
downsample_padding: int = 1,
|
||||
mid_block_scale_factor: float = 1,
|
||||
act_fn: str = "silu",
|
||||
norm_num_groups: Optional[int] = 32,
|
||||
norm_eps: float = 1e-5,
|
||||
cross_attention_dim: int = 1280,
|
||||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||||
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||||
use_linear_projection: bool = False,
|
||||
class_embed_type: Optional[str] = None,
|
||||
num_class_embeds: Optional[int] = None,
|
||||
upcast_attention: bool = False,
|
||||
resnet_time_scale_shift: str = "default",
|
||||
projection_class_embeddings_input_dim: Optional[int] = None,
|
||||
controlnet_conditioning_channel_order: str = "rgb",
|
||||
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||||
global_pool_conditions: bool = False,
|
||||
|
||||
use_motion_module = True,
|
||||
motion_module_resolutions = ( 1,2,4,8 ),
|
||||
motion_module_mid_block = False,
|
||||
motion_module_type = "Vanilla",
|
||||
motion_module_kwargs = {
|
||||
"num_attention_heads": 8,
|
||||
"num_transformer_block": 1,
|
||||
"attention_block_types": ["Temporal_Self"],
|
||||
"temporal_position_encoding": True,
|
||||
"temporal_position_encoding_max_len": 32,
|
||||
"temporal_attention_dim_div": 1,
|
||||
"causal_temporal_attention": False,
|
||||
},
|
||||
|
||||
concate_conditioning_mask: bool = True,
|
||||
use_simplified_condition_embedding: bool = False,
|
||||
|
||||
set_noisy_sample_input_to_zero: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# If `num_attention_heads` is not defined (which is the case for most models)
|
||||
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||||
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||||
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||||
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||||
# which is why we correct for the naming here.
|
||||
num_attention_heads = num_attention_heads or attention_head_dim
|
||||
|
||||
# Check inputs
|
||||
if len(block_out_channels) != len(down_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||||
raise ValueError(
|
||||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||||
)
|
||||
|
||||
# input
|
||||
self.set_noisy_sample_input_to_zero = set_noisy_sample_input_to_zero
|
||||
|
||||
conv_in_kernel = 3
|
||||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||||
self.conv_in = InflatedConv3d(
|
||||
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
||||
)
|
||||
|
||||
if concate_conditioning_mask:
|
||||
conditioning_channels = conditioning_channels + 1
|
||||
self.concate_conditioning_mask = concate_conditioning_mask
|
||||
|
||||
# control net conditioning embedding
|
||||
if use_simplified_condition_embedding:
|
||||
self.controlnet_cond_embedding = zero_module(
|
||||
InflatedConv3d(conditioning_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding)
|
||||
)
|
||||
else:
|
||||
self.controlnet_cond_embedding = SparseControlNetConditioningEmbedding(
|
||||
conditioning_embedding_channels=block_out_channels[0],
|
||||
block_out_channels=conditioning_embedding_out_channels,
|
||||
conditioning_channels=conditioning_channels,
|
||||
)
|
||||
self.use_simplified_condition_embedding = use_simplified_condition_embedding
|
||||
|
||||
# time
|
||||
time_embed_dim = block_out_channels[0] * 4
|
||||
|
||||
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||||
timestep_input_dim = block_out_channels[0]
|
||||
|
||||
self.time_embedding = TimestepEmbedding(
|
||||
timestep_input_dim,
|
||||
time_embed_dim,
|
||||
act_fn=act_fn,
|
||||
)
|
||||
|
||||
# class embedding
|
||||
if class_embed_type is None and num_class_embeds is not None:
|
||||
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||||
elif class_embed_type == "timestep":
|
||||
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
||||
elif class_embed_type == "identity":
|
||||
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
||||
elif class_embed_type == "projection":
|
||||
if projection_class_embeddings_input_dim is None:
|
||||
raise ValueError(
|
||||
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
||||
)
|
||||
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
||||
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
||||
# 2. it projects from an arbitrary input dimension.
|
||||
#
|
||||
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
||||
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||||
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||||
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||||
else:
|
||||
self.class_embedding = None
|
||||
|
||||
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
self.controlnet_down_blocks = nn.ModuleList([])
|
||||
|
||||
if isinstance(only_cross_attention, bool):
|
||||
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
||||
|
||||
if isinstance(attention_head_dim, int):
|
||||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||||
|
||||
if isinstance(num_attention_heads, int):
|
||||
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||||
|
||||
# down
|
||||
output_channel = block_out_channels[0]
|
||||
|
||||
controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1)
|
||||
controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_down_blocks.append(controlnet_block)
|
||||
|
||||
for i, down_block_type in enumerate(down_block_types):
|
||||
res = 2 ** i
|
||||
input_channel = output_channel
|
||||
output_channel = block_out_channels[i]
|
||||
is_final_block = i == len(block_out_channels) - 1
|
||||
|
||||
down_block = get_down_block(
|
||||
down_block_type,
|
||||
num_layers=layers_per_block,
|
||||
in_channels=input_channel,
|
||||
out_channels=output_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
add_downsample=not is_final_block,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
resnet_groups=norm_num_groups,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||||
downsample_padding=downsample_padding,
|
||||
use_linear_projection=use_linear_projection,
|
||||
only_cross_attention=only_cross_attention[i],
|
||||
upcast_attention=upcast_attention,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
|
||||
use_inflated_groupnorm=True,
|
||||
|
||||
use_motion_module=use_motion_module and (res in motion_module_resolutions),
|
||||
motion_module_type=motion_module_type,
|
||||
motion_module_kwargs=motion_module_kwargs,
|
||||
)
|
||||
self.down_blocks.append(down_block)
|
||||
|
||||
for _ in range(layers_per_block):
|
||||
controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1)
|
||||
controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_down_blocks.append(controlnet_block)
|
||||
|
||||
if not is_final_block:
|
||||
controlnet_block = InflatedConv3d(output_channel, output_channel, kernel_size=1)
|
||||
controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_down_blocks.append(controlnet_block)
|
||||
|
||||
# mid
|
||||
mid_block_channel = block_out_channels[-1]
|
||||
|
||||
controlnet_block = InflatedConv3d(mid_block_channel, mid_block_channel, kernel_size=1)
|
||||
controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_mid_block = controlnet_block
|
||||
|
||||
self.mid_block = UNetMidBlock3DCrossAttn(
|
||||
in_channels=mid_block_channel,
|
||||
temb_channels=time_embed_dim,
|
||||
resnet_eps=norm_eps,
|
||||
resnet_act_fn=act_fn,
|
||||
output_scale_factor=mid_block_scale_factor,
|
||||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
attn_num_head_channels=num_attention_heads[-1],
|
||||
resnet_groups=norm_num_groups,
|
||||
use_linear_projection=use_linear_projection,
|
||||
upcast_attention=upcast_attention,
|
||||
|
||||
use_inflated_groupnorm=True,
|
||||
use_motion_module=use_motion_module and motion_module_mid_block,
|
||||
motion_module_type=motion_module_type,
|
||||
motion_module_kwargs=motion_module_kwargs,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_unet(
|
||||
cls,
|
||||
unet: UNet2DConditionModel,
|
||||
controlnet_conditioning_channel_order: str = "rgb",
|
||||
conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
|
||||
load_weights_from_unet: bool = True,
|
||||
|
||||
controlnet_additional_kwargs: dict = {},
|
||||
):
|
||||
controlnet = cls(
|
||||
in_channels=unet.config.in_channels,
|
||||
flip_sin_to_cos=unet.config.flip_sin_to_cos,
|
||||
freq_shift=unet.config.freq_shift,
|
||||
down_block_types=unet.config.down_block_types,
|
||||
only_cross_attention=unet.config.only_cross_attention,
|
||||
block_out_channels=unet.config.block_out_channels,
|
||||
layers_per_block=unet.config.layers_per_block,
|
||||
downsample_padding=unet.config.downsample_padding,
|
||||
mid_block_scale_factor=unet.config.mid_block_scale_factor,
|
||||
act_fn=unet.config.act_fn,
|
||||
norm_num_groups=unet.config.norm_num_groups,
|
||||
norm_eps=unet.config.norm_eps,
|
||||
cross_attention_dim=unet.config.cross_attention_dim,
|
||||
attention_head_dim=unet.config.attention_head_dim,
|
||||
num_attention_heads=unet.config.num_attention_heads,
|
||||
use_linear_projection=unet.config.use_linear_projection,
|
||||
class_embed_type=unet.config.class_embed_type,
|
||||
num_class_embeds=unet.config.num_class_embeds,
|
||||
upcast_attention=unet.config.upcast_attention,
|
||||
resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
|
||||
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
|
||||
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
|
||||
conditioning_embedding_out_channels=conditioning_embedding_out_channels,
|
||||
|
||||
**controlnet_additional_kwargs,
|
||||
)
|
||||
|
||||
if load_weights_from_unet:
|
||||
m, u = controlnet.conv_in.load_state_dict(cls.image_layer_filter(unet.conv_in.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
m, u = controlnet.time_proj.load_state_dict(cls.image_layer_filter(unet.time_proj.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
m, u = controlnet.time_embedding.load_state_dict(cls.image_layer_filter(unet.time_embedding.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
|
||||
if controlnet.class_embedding:
|
||||
m, u = controlnet.class_embedding.load_state_dict(cls.image_layer_filter(unet.class_embedding.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
m, u = controlnet.down_blocks.load_state_dict(cls.image_layer_filter(unet.down_blocks.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
m, u = controlnet.mid_block.load_state_dict(cls.image_layer_filter(unet.mid_block.state_dict()), strict=False)
|
||||
assert len(u) == 0
|
||||
|
||||
return controlnet
|
||||
|
||||
@staticmethod
|
||||
def image_layer_filter(state_dict):
|
||||
new_state_dict = {}
|
||||
for name, param in state_dict.items():
|
||||
if "motion_modules." in name or "lora" in name: continue
|
||||
new_state_dict[name] = param
|
||||
return new_state_dict
|
||||
|
||||
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
|
||||
def set_attention_slice(self, slice_size):
|
||||
r"""
|
||||
Enable sliced attention computation.
|
||||
|
||||
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
||||
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
||||
|
||||
Args:
|
||||
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
||||
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
||||
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
||||
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
||||
must be a multiple of `slice_size`.
|
||||
"""
|
||||
sliceable_head_dims = []
|
||||
|
||||
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
||||
if hasattr(module, "set_attention_slice"):
|
||||
sliceable_head_dims.append(module.sliceable_head_dim)
|
||||
|
||||
for child in module.children():
|
||||
fn_recursive_retrieve_sliceable_dims(child)
|
||||
|
||||
# retrieve number of attention layers
|
||||
for module in self.children():
|
||||
fn_recursive_retrieve_sliceable_dims(module)
|
||||
|
||||
num_sliceable_layers = len(sliceable_head_dims)
|
||||
|
||||
if slice_size == "auto":
|
||||
# half the attention head size is usually a good trade-off between
|
||||
# speed and memory
|
||||
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
||||
elif slice_size == "max":
|
||||
# make smallest slice possible
|
||||
slice_size = num_sliceable_layers * [1]
|
||||
|
||||
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
||||
|
||||
if len(slice_size) != len(sliceable_head_dims):
|
||||
raise ValueError(
|
||||
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
||||
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
||||
)
|
||||
|
||||
for i in range(len(slice_size)):
|
||||
size = slice_size[i]
|
||||
dim = sliceable_head_dims[i]
|
||||
if size is not None and size > dim:
|
||||
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
||||
|
||||
# Recursively walk through all the children.
|
||||
# Any children which exposes the set_attention_slice method
|
||||
# gets the message
|
||||
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
||||
if hasattr(module, "set_attention_slice"):
|
||||
module.set_attention_slice(slice_size.pop())
|
||||
|
||||
for child in module.children():
|
||||
fn_recursive_set_attention_slice(child, slice_size)
|
||||
|
||||
reversed_slice_size = list(reversed(slice_size))
|
||||
for module in self.children():
|
||||
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
sample: torch.FloatTensor,
|
||||
timestep: Union[torch.Tensor, float, int],
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
|
||||
controlnet_cond: torch.FloatTensor,
|
||||
conditioning_mask: Optional[torch.FloatTensor] = None,
|
||||
|
||||
conditioning_scale: float = 1.0,
|
||||
class_labels: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
guess_mode: bool = False,
|
||||
return_dict: bool = True,
|
||||
) -> Union[SparseControlNetOutput, Tuple]:
|
||||
|
||||
# set input noise to zero
|
||||
if self.set_noisy_sample_input_to_zero:
|
||||
sample = torch.zeros_like(sample).to(sample.device)
|
||||
|
||||
# prepare attention_mask
|
||||
if attention_mask is not None:
|
||||
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||||
attention_mask = attention_mask.unsqueeze(1)
|
||||
|
||||
# 1. time
|
||||
timesteps = timestep
|
||||
if not torch.is_tensor(timesteps):
|
||||
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||||
# This would be a good case for the `match` statement (Python 3.10+)
|
||||
is_mps = sample.device.type == "mps"
|
||||
if isinstance(timestep, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
||||
elif len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(sample.device)
|
||||
|
||||
timesteps = timesteps.repeat(sample.shape[0] // timesteps.shape[0])
|
||||
encoder_hidden_states = encoder_hidden_states.repeat(sample.shape[0] // encoder_hidden_states.shape[0], 1, 1)
|
||||
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(sample.shape[0])
|
||||
|
||||
t_emb = self.time_proj(timesteps)
|
||||
|
||||
# timesteps does not contain any weights and will always return f32 tensors
|
||||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||||
# there might be better ways to encapsulate this.
|
||||
t_emb = t_emb.to(dtype=self.dtype)
|
||||
emb = self.time_embedding(t_emb)
|
||||
|
||||
if self.class_embedding is not None:
|
||||
if class_labels is None:
|
||||
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
||||
|
||||
if self.config.class_embed_type == "timestep":
|
||||
class_labels = self.time_proj(class_labels)
|
||||
|
||||
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
||||
emb = emb + class_emb
|
||||
|
||||
# 2. pre-process
|
||||
sample = self.conv_in(sample)
|
||||
|
||||
if self.concate_conditioning_mask:
|
||||
controlnet_cond = torch.cat([controlnet_cond, conditioning_mask], dim=1)
|
||||
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
|
||||
|
||||
sample = sample + controlnet_cond
|
||||
|
||||
# 3. down
|
||||
down_block_res_samples = (sample,)
|
||||
for downsample_block in self.down_blocks:
|
||||
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
||||
sample, res_samples = downsample_block(
|
||||
hidden_states=sample,
|
||||
temb=emb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
# cross_attention_kwargs=cross_attention_kwargs,
|
||||
)
|
||||
else: sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
||||
|
||||
down_block_res_samples += res_samples
|
||||
|
||||
# 4. mid
|
||||
if self.mid_block is not None:
|
||||
sample = self.mid_block(
|
||||
sample,
|
||||
emb,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
# cross_attention_kwargs=cross_attention_kwargs,
|
||||
)
|
||||
|
||||
# 5. controlnet blocks
|
||||
controlnet_down_block_res_samples = ()
|
||||
|
||||
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
|
||||
down_block_res_sample = controlnet_block(down_block_res_sample)
|
||||
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
|
||||
|
||||
down_block_res_samples = controlnet_down_block_res_samples
|
||||
|
||||
mid_block_res_sample = self.controlnet_mid_block(sample)
|
||||
|
||||
# 6. scaling
|
||||
if guess_mode and not self.config.global_pool_conditions:
|
||||
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
|
||||
|
||||
scales = scales * conditioning_scale
|
||||
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
|
||||
mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
|
||||
else:
|
||||
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
|
||||
mid_block_res_sample = mid_block_res_sample * conditioning_scale
|
||||
|
||||
if self.config.global_pool_conditions:
|
||||
down_block_res_samples = [
|
||||
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
|
||||
]
|
||||
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
|
||||
|
||||
if not return_dict:
|
||||
return (down_block_res_samples, mid_block_res_sample)
|
||||
|
||||
return SparseControlNetOutput(
|
||||
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
|
||||
)
|
||||
|
||||
|
||||
def zero_module(module):
|
||||
for p in module.parameters():
|
||||
nn.init.zeros_(p)
|
||||
return module
|
||||
@@ -86,8 +86,8 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
||||
motion_module_decoder_only = False,
|
||||
motion_module_type = None,
|
||||
motion_module_kwargs = {},
|
||||
unet_use_cross_frame_attention = None,
|
||||
unet_use_temporal_attention = None,
|
||||
unet_use_cross_frame_attention = False,
|
||||
unet_use_temporal_attention = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -324,6 +324,11 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
||||
encoder_hidden_states: torch.Tensor,
|
||||
class_labels: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
|
||||
# support controlnet
|
||||
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||||
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
||||
|
||||
return_dict: bool = True,
|
||||
) -> Union[UNet3DConditionOutput, Tuple]:
|
||||
r"""
|
||||
@@ -414,11 +419,25 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
||||
|
||||
down_block_res_samples += res_samples
|
||||
|
||||
# support controlnet
|
||||
down_block_res_samples = list(down_block_res_samples)
|
||||
if down_block_additional_residuals is not None:
|
||||
for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
|
||||
if down_block_additional_residual.dim() == 4: # boardcast
|
||||
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
|
||||
down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
|
||||
|
||||
# mid
|
||||
sample = self.mid_block(
|
||||
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
||||
)
|
||||
|
||||
# support controlnet
|
||||
if mid_block_additional_residual is not None:
|
||||
if mid_block_additional_residual.dim() == 4: # boardcast
|
||||
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
|
||||
sample = sample + mid_block_additional_residual
|
||||
|
||||
# up
|
||||
for i, upsample_block in enumerate(self.up_blocks):
|
||||
is_final_block = i == len(self.up_blocks) - 1
|
||||
@@ -459,7 +478,7 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
||||
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
|
||||
if subfolder is not None:
|
||||
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
||||
print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...")
|
||||
print(f"loaded 3D unet's pretrained weights from {pretrained_model_path} ...")
|
||||
|
||||
config_file = os.path.join(pretrained_model_path, 'config.json')
|
||||
if not os.path.isfile(config_file):
|
||||
@@ -489,9 +508,8 @@ class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
||||
|
||||
m, u = model.load_state_dict(state_dict, strict=False)
|
||||
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
||||
# print(f"### missing keys:\n{m}\n### unexpected keys:\n{u}\n")
|
||||
|
||||
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### Temporal Module Parameters: {sum(params) / 1e6} M")
|
||||
params = [p.numel() if "motion_modules." in n else 0 for n, p in model.named_parameters()]
|
||||
print(f"### Motion Module Parameters: {sum(params) / 1e6} M")
|
||||
|
||||
return model
|
||||
|
||||
@@ -28,9 +28,9 @@ def get_down_block(
|
||||
upcast_attention=False,
|
||||
resnet_time_scale_shift="default",
|
||||
|
||||
unet_use_cross_frame_attention=None,
|
||||
unet_use_temporal_attention=None,
|
||||
use_inflated_groupnorm=None,
|
||||
unet_use_cross_frame_attention=False,
|
||||
unet_use_temporal_attention=False,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
|
||||
@@ -108,9 +108,9 @@ def get_up_block(
|
||||
upcast_attention=False,
|
||||
resnet_time_scale_shift="default",
|
||||
|
||||
unet_use_cross_frame_attention=None,
|
||||
unet_use_temporal_attention=None,
|
||||
use_inflated_groupnorm=None,
|
||||
unet_use_cross_frame_attention=False,
|
||||
unet_use_temporal_attention=False,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
motion_module_type=None,
|
||||
@@ -187,9 +187,9 @@ class UNetMidBlock3DCrossAttn(nn.Module):
|
||||
use_linear_projection=False,
|
||||
upcast_attention=False,
|
||||
|
||||
unet_use_cross_frame_attention=None,
|
||||
unet_use_temporal_attention=None,
|
||||
use_inflated_groupnorm=None,
|
||||
unet_use_cross_frame_attention=False,
|
||||
unet_use_temporal_attention=False,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
|
||||
@@ -301,9 +301,9 @@ class CrossAttnDownBlock3D(nn.Module):
|
||||
only_cross_attention=False,
|
||||
upcast_attention=False,
|
||||
|
||||
unet_use_cross_frame_attention=None,
|
||||
unet_use_temporal_attention=None,
|
||||
use_inflated_groupnorm=None,
|
||||
unet_use_cross_frame_attention=False,
|
||||
unet_use_temporal_attention=False,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
|
||||
@@ -438,7 +438,7 @@ class DownBlock3D(nn.Module):
|
||||
add_downsample=True,
|
||||
downsample_padding=1,
|
||||
|
||||
use_inflated_groupnorm=None,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
motion_module_type=None,
|
||||
@@ -544,9 +544,9 @@ class CrossAttnUpBlock3D(nn.Module):
|
||||
only_cross_attention=False,
|
||||
upcast_attention=False,
|
||||
|
||||
unet_use_cross_frame_attention=None,
|
||||
unet_use_temporal_attention=None,
|
||||
use_inflated_groupnorm=None,
|
||||
unet_use_cross_frame_attention=False,
|
||||
unet_use_temporal_attention=False,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
|
||||
@@ -684,7 +684,7 @@ class UpBlock3D(nn.Module):
|
||||
output_scale_factor=1.0,
|
||||
add_upsample=True,
|
||||
|
||||
use_inflated_groupnorm=None,
|
||||
use_inflated_groupnorm=False,
|
||||
|
||||
use_motion_module=None,
|
||||
motion_module_type=None,
|
||||
|
||||
@@ -28,7 +28,8 @@ from diffusers.utils import deprecate, logging, BaseOutput
|
||||
from einops import rearrange
|
||||
|
||||
from ..models.unet import UNet3DConditionModel
|
||||
|
||||
from ..models.sparse_controlnet import SparseControlNetModel
|
||||
import pdb
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
@@ -55,6 +56,7 @@ class AnimationPipeline(DiffusionPipeline):
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
],
|
||||
controlnet: Union[SparseControlNetModel, None] = None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
@@ -112,6 +114,7 @@ class AnimationPipeline(DiffusionPipeline):
|
||||
tokenizer=tokenizer,
|
||||
unet=unet,
|
||||
scheduler=scheduler,
|
||||
controlnet=controlnet,
|
||||
)
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
|
||||
@@ -330,6 +333,12 @@ class AnimationPipeline(DiffusionPipeline):
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: Optional[int] = 1,
|
||||
|
||||
# support controlnet
|
||||
controlnet_images: torch.FloatTensor = None,
|
||||
controlnet_image_index: list = [0],
|
||||
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
||||
|
||||
**kwargs,
|
||||
):
|
||||
# Default height and width to unet
|
||||
@@ -391,15 +400,43 @@ class AnimationPipeline(DiffusionPipeline):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
down_block_additional_residuals = mid_block_additional_residual = None
|
||||
if (getattr(self, "controlnet", None) != None) and (controlnet_images != None):
|
||||
assert controlnet_images.dim() == 5
|
||||
|
||||
controlnet_noisy_latents = latent_model_input
|
||||
controlnet_prompt_embeds = text_embeddings
|
||||
|
||||
controlnet_images = controlnet_images.to(latents.device)
|
||||
|
||||
controlnet_cond_shape = list(controlnet_images.shape)
|
||||
controlnet_cond_shape[2] = video_length
|
||||
controlnet_cond = torch.zeros(controlnet_cond_shape).to(latents.device)
|
||||
|
||||
controlnet_conditioning_mask_shape = list(controlnet_cond.shape)
|
||||
controlnet_conditioning_mask_shape[1] = 1
|
||||
controlnet_conditioning_mask = torch.zeros(controlnet_conditioning_mask_shape).to(latents.device)
|
||||
|
||||
assert controlnet_images.shape[2] >= len(controlnet_image_index)
|
||||
controlnet_cond[:,:,controlnet_image_index] = controlnet_images[:,:,:len(controlnet_image_index)]
|
||||
controlnet_conditioning_mask[:,:,controlnet_image_index] = 1
|
||||
|
||||
down_block_additional_residuals, mid_block_additional_residual = self.controlnet(
|
||||
controlnet_noisy_latents, t,
|
||||
encoder_hidden_states=controlnet_prompt_embeds,
|
||||
controlnet_cond=controlnet_cond,
|
||||
conditioning_mask=controlnet_conditioning_mask,
|
||||
conditioning_scale=controlnet_conditioning_scale,
|
||||
guess_mode=False, return_dict=False,
|
||||
)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
|
||||
# noise_pred = []
|
||||
# import pdb
|
||||
# pdb.set_trace()
|
||||
# for batch_idx in range(latent_model_input.shape[0]):
|
||||
# noise_pred_single = self.unet(latent_model_input[batch_idx:batch_idx+1], t, encoder_hidden_states=text_embeddings[batch_idx:batch_idx+1]).sample.to(dtype=latents_dtype)
|
||||
# noise_pred.append(noise_pred_single)
|
||||
# noise_pred = torch.cat(noise_pred)
|
||||
noise_pred = self.unet(
|
||||
latent_model_input, t,
|
||||
encoder_hidden_states=text_embeddings,
|
||||
down_block_additional_residuals = down_block_additional_residuals,
|
||||
mid_block_additional_residual = mid_block_additional_residual,
|
||||
).sample.to(dtype=latents_dtype)
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
|
||||
@@ -12,7 +12,8 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
#
|
||||
# Changes were made to this source code by Yuwei Guo.
|
||||
""" Conversion script for the LoRA's safetensors checkpoints. """
|
||||
|
||||
import argparse
|
||||
@@ -21,11 +22,9 @@ import torch
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from diffusers import StableDiffusionPipeline
|
||||
import pdb
|
||||
|
||||
|
||||
|
||||
def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0):
|
||||
def load_diffusers_lora(pipeline, state_dict, alpha=1.0):
|
||||
# directly update weight in diffusers model
|
||||
for key in state_dict:
|
||||
# only process lora down key
|
||||
@@ -48,7 +47,6 @@ def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0):
|
||||
return pipeline
|
||||
|
||||
|
||||
|
||||
def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6):
|
||||
# load base model
|
||||
# pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
|
||||
|
||||
@@ -11,7 +11,7 @@ from safetensors import safe_open
|
||||
from tqdm import tqdm
|
||||
from einops import rearrange
|
||||
from animatediff.utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint
|
||||
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, convert_motion_lora_ckpt_to_diffusers
|
||||
from animatediff.utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora
|
||||
|
||||
|
||||
def zero_rank_print(s):
|
||||
@@ -96,12 +96,15 @@ def load_weights(
|
||||
# motion module
|
||||
motion_module_path = "",
|
||||
motion_module_lora_configs = [],
|
||||
# domain adapter
|
||||
adapter_lora_path = "",
|
||||
adapter_lora_scale = 1.0,
|
||||
# image layers
|
||||
dreambooth_model_path = "",
|
||||
lora_model_path = "",
|
||||
lora_alpha = 0.8,
|
||||
dreambooth_model_path = "",
|
||||
lora_model_path = "",
|
||||
lora_alpha = 0.8,
|
||||
):
|
||||
# 1.1 motion module
|
||||
# motion module
|
||||
unet_state_dict = {}
|
||||
if motion_module_path != "":
|
||||
print(f"load motion module from {motion_module_path}")
|
||||
@@ -113,6 +116,7 @@ def load_weights(
|
||||
assert len(unexpected) == 0
|
||||
del unet_state_dict
|
||||
|
||||
# base model
|
||||
if dreambooth_model_path != "":
|
||||
print(f"load dreambooth model from {dreambooth_model_path}")
|
||||
if dreambooth_model_path.endswith(".safetensors"):
|
||||
@@ -133,6 +137,7 @@ def load_weights(
|
||||
animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict)
|
||||
del dreambooth_state_dict
|
||||
|
||||
# lora layers
|
||||
if lora_model_path != "":
|
||||
print(f"load lora model from {lora_model_path}")
|
||||
assert lora_model_path.endswith(".safetensors")
|
||||
@@ -144,14 +149,21 @@ def load_weights(
|
||||
animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha)
|
||||
del lora_state_dict
|
||||
|
||||
# domain adapter lora
|
||||
if adapter_lora_path != "":
|
||||
print(f"load domain lora from {adapter_lora_path}")
|
||||
domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu")
|
||||
domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict
|
||||
|
||||
animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale)
|
||||
|
||||
# motion module lora
|
||||
for motion_module_lora_config in motion_module_lora_configs:
|
||||
path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"]
|
||||
print(f"load motion LoRA from {path}")
|
||||
|
||||
motion_lora_state_dict = torch.load(path, map_location="cpu")
|
||||
motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict
|
||||
|
||||
animation_pipeline = convert_motion_lora_ckpt_to_diffusers(animation_pipeline, motion_lora_state_dict, alpha)
|
||||
animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha)
|
||||
|
||||
return animation_pipeline
|
||||
|
||||
Reference in New Issue
Block a user