Files
AnimateDiff/scripts/animate.py

143 lines
4.9 KiB
Python
Raw Normal View History

2023-07-09 21:32:22 +08:00
import argparse
import datetime
import inspect
import os
from omegaconf import OmegaConf
import torch
import diffusers
2023-11-10 12:37:52 +08:00
from diffusers import AutoencoderKL, EulerDiscreteScheduler
2023-07-09 21:32:22 +08:00
from tqdm.auto import tqdm
2023-11-10 12:37:52 +08:00
from transformers import CLIPTextModel, CLIPTokenizer, CLIPTextModelWithProjection
2023-07-09 21:32:22 +08:00
from animatediff.models.unet import UNet3DConditionModel
from animatediff.pipelines.pipeline_animation import AnimationPipeline
2023-11-10 12:37:52 +08:00
from animatediff.utils.util import save_videos_grid, load_weights
2023-07-12 16:41:08 +08:00
from diffusers.utils.import_utils import is_xformers_available
2023-07-09 21:32:22 +08:00
from einops import rearrange, repeat
import csv, pdb, glob
2023-11-10 12:37:52 +08:00
from safetensors import safe_open
2023-07-09 21:32:22 +08:00
import math
from pathlib import Path
2023-11-10 12:37:52 +08:00
import torchvision
import torchvision.transforms as transforms
from PIL import Image
import numpy as np
2023-07-09 21:32:22 +08:00
2023-11-10 12:37:52 +08:00
@torch.no_grad()
2023-07-09 21:32:22 +08:00
def main(args):
2023-11-10 12:37:52 +08:00
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
time_str = datetime.datetime.now().strftime("%Y-%m-%d")
savedir = f"sample/{Path(args.exp_config).stem}_{args.H}_{args.W}-{time_str}"
os.makedirs(savedir, exist_ok=True)
# Load Config
exp_config = OmegaConf.load(args.exp_config)
config = OmegaConf.load(args.base_config)
config = OmegaConf.merge(config, exp_config)
if config.get('base_model_path', '') != '':
args.pretrained_model_path = config.base_model_path
# Load Component
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae")
tokenizer_two = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer_2")
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(args.pretrained_model_path, subfolder="text_encoder_2")
# init unet model
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(config.unet_additional_kwargs))
# Enable memory efficient attention
if is_xformers_available() and args.xformers:
unet.enable_xformers_memory_efficient_attention()
scheduler = EulerDiscreteScheduler(timestep_spacing='leading', steps_offset=1, **config.noise_scheduler_kwargs)
pipeline = AnimationPipeline(
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=scheduler,
text_encoder_2 = text_encoder_two, tokenizer_2=tokenizer_two
).to("cuda")
# Load model weights
pipeline = load_weights(
pipeline = pipeline,
motion_module_path = config.get("motion_module_path", ""),
ckpt_path = config.get("ckpt_path", ""),
lora_path = config.get("lora_path", ""),
lora_alpha = config.get("lora_alpha", 0.8)
)
pipeline.unet = pipeline.unet.half()
pipeline.text_encoder = pipeline.text_encoder.half()
pipeline.text_encoder_2 = pipeline.text_encoder_2.half()
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
prompts = config.prompt
n_prompts = config.n_prompt
random_seeds = config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
seeds = []
samples = []
with torch.inference_mode():
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
# manually set random seed for reproduction
if random_seed != -1: torch.manual_seed(random_seed)
else: torch.seed()
seeds.append(torch.initial_seed())
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
sample = pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = config.get('steps', 100),
guidance_scale = config.get('guidance_scale', 10),
width = args.W,
height = args.H,
single_model_length = args.L,
).videos
samples.append(sample)
prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
prompt = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# save video
save_videos_grid(sample, f"{savedir}/sample/{prompt}.mp4")
print(f"save to {savedir}/sample/{prompt}.mp4")
samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/sample-{datetime.datetime.now().strftime('%Y-%m-%dT%H-%M-%S')}.mp4", n_rows=4)
config.seed = seeds
OmegaConf.save(config, f"{savedir}/config.yaml")
2023-07-09 21:32:22 +08:00
if __name__ == "__main__":
2023-11-10 12:37:52 +08:00
parser = argparse.ArgumentParser()
parser.add_argument("--pretrained_model_path", type=str, default="models/StableDiffusion/stable-diffusion-xl-base-1.0",)
parser.add_argument("--base_config", type=str, default="configs/inference/inference.yaml")
parser.add_argument("--exp_config", type=str, required=True)
parser.add_argument("--L", type=int, default=16 )
parser.add_argument("--W", type=int, default=1024)
parser.add_argument("--H", type=int, default=1024)
parser.add_argument("--xformers", action="store_true")
args = parser.parse_args()
main(args)