Files
AnimateDiff/scripts/animate.py

196 lines
8.8 KiB
Python
Raw Normal View History

2023-07-09 21:32:22 +08:00
import argparse
import datetime
import inspect
import os
from omegaconf import OmegaConf
import torch
2023-12-15 21:00:07 +08:00
import torchvision.transforms as transforms
2023-07-09 21:32:22 +08:00
import diffusers
from diffusers import AutoencoderKL, DDIMScheduler
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from animatediff.models.unet import UNet3DConditionModel
2023-12-15 21:00:07 +08:00
from animatediff.models.sparse_controlnet import SparseControlNetModel
2023-07-09 21:32:22 +08:00
from animatediff.pipelines.pipeline_animation import AnimationPipeline
from animatediff.utils.util import save_videos_grid
2023-09-25 11:38:29 +08:00
from animatediff.utils.util import load_weights
2023-07-12 16:41:08 +08:00
from diffusers.utils.import_utils import is_xformers_available
2023-07-09 21:32:22 +08:00
from einops import rearrange, repeat
2023-12-15 21:00:07 +08:00
import csv, pdb, glob, math
2023-07-09 21:32:22 +08:00
from pathlib import Path
2023-12-15 21:00:07 +08:00
from PIL import Image
import numpy as np
2023-07-09 21:32:22 +08:00
2023-12-15 21:00:07 +08:00
@torch.no_grad()
2023-07-09 21:32:22 +08:00
def main(args):
*_, func_args = inspect.getargvalues(inspect.currentframe())
func_args = dict(func_args)
time_str = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
savedir = f"samples/{Path(args.config).stem}-{time_str}"
os.makedirs(savedir)
config = OmegaConf.load(args.config)
samples = []
2023-12-15 21:00:07 +08:00
# create validation pipeline
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").cuda()
vae = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").cuda()
2023-07-09 23:25:46 +08:00
sample_idx = 0
2023-12-15 21:00:07 +08:00
for model_idx, model_config in enumerate(config):
model_config.W = model_config.get("W", args.W)
model_config.H = model_config.get("H", args.H)
model_config.L = model_config.get("L", args.L)
inference_config = OmegaConf.load(model_config.get("inference_config", args.inference_config))
unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(inference_config.unet_additional_kwargs)).cuda()
# load controlnet model
controlnet = controlnet_images = None
if model_config.get("controlnet_path", "") != "":
assert model_config.get("controlnet_images", "") != ""
assert model_config.get("controlnet_config", "") != ""
unet.config.num_attention_heads = 8
unet.config.projection_class_embeddings_input_dim = None
controlnet_config = OmegaConf.load(model_config.controlnet_config)
controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {}))
print(f"loading controlnet checkpoint from {model_config.controlnet_path} ...")
controlnet_state_dict = torch.load(model_config.controlnet_path, map_location="cpu")
controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict
2023-12-16 12:50:16 +08:00
controlnet_state_dict.pop("animatediff_config", "")
2023-12-15 21:00:07 +08:00
controlnet.load_state_dict(controlnet_state_dict)
controlnet.cuda()
image_paths = model_config.controlnet_images
if isinstance(image_paths, str): image_paths = [image_paths]
print(f"controlnet image paths:")
for path in image_paths: print(path)
assert len(image_paths) <= model_config.L
image_transforms = transforms.Compose([
transforms.RandomResizedCrop(
(model_config.H, model_config.W), (1.0, 1.0),
ratio=(model_config.W/model_config.H, model_config.W/model_config.H)
),
transforms.ToTensor(),
])
if model_config.get("normalize_condition_images", False):
def image_norm(image):
image = image.mean(dim=0, keepdim=True).repeat(3,1,1)
image -= image.min()
image /= image.max()
return image
else: image_norm = lambda x: x
controlnet_images = [image_norm(image_transforms(Image.open(path).convert("RGB"))) for path in image_paths]
os.makedirs(os.path.join(savedir, "control_images"), exist_ok=True)
for i, image in enumerate(controlnet_images):
Image.fromarray((255. * (image.numpy().transpose(1,2,0))).astype(np.uint8)).save(f"{savedir}/control_images/{i}.png")
controlnet_images = torch.stack(controlnet_images).unsqueeze(0).cuda()
controlnet_images = rearrange(controlnet_images, "b f c h w -> b c f h w")
if controlnet.use_simplified_condition_embedding:
num_controlnet_images = controlnet_images.shape[2]
controlnet_images = rearrange(controlnet_images, "b c f h w -> (b f) c h w")
controlnet_images = vae.encode(controlnet_images * 2. - 1.).latent_dist.sample() * 0.18215
controlnet_images = rearrange(controlnet_images, "(b f) c h w -> b c f h w", f=num_controlnet_images)
# set xformers
if is_xformers_available() and (not args.without_xformers):
unet.enable_xformers_memory_efficient_attention()
if controlnet is not None: controlnet.enable_xformers_memory_efficient_attention()
pipeline = AnimationPipeline(
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
controlnet=controlnet,
scheduler=DDIMScheduler(**OmegaConf.to_container(inference_config.noise_scheduler_kwargs)),
).to("cuda")
pipeline = load_weights(
pipeline,
# motion module
motion_module_path = model_config.get("motion_module", ""),
motion_module_lora_configs = model_config.get("motion_module_lora_configs", []),
# domain adapter
adapter_lora_path = model_config.get("adapter_lora_path", ""),
adapter_lora_scale = model_config.get("adapter_lora_scale", 1.0),
# image layers
dreambooth_model_path = model_config.get("dreambooth_path", ""),
lora_model_path = model_config.get("lora_model_path", ""),
lora_alpha = model_config.get("lora_alpha", 0.8),
).to("cuda")
prompts = model_config.prompt
n_prompts = list(model_config.n_prompt) * len(prompts) if len(model_config.n_prompt) == 1 else model_config.n_prompt
random_seeds = model_config.get("seed", [-1])
random_seeds = [random_seeds] if isinstance(random_seeds, int) else list(random_seeds)
random_seeds = random_seeds * len(prompts) if len(random_seeds) == 1 else random_seeds
2023-07-09 21:32:22 +08:00
2023-12-15 21:00:07 +08:00
config[model_idx].random_seed = []
for prompt_idx, (prompt, n_prompt, random_seed) in enumerate(zip(prompts, n_prompts, random_seeds)):
2023-07-09 21:32:22 +08:00
2023-12-15 21:00:07 +08:00
# manually set random seed for reproduction
if random_seed != -1: torch.manual_seed(random_seed)
else: torch.seed()
config[model_idx].random_seed.append(torch.initial_seed())
2023-07-09 21:32:22 +08:00
2023-12-15 21:00:07 +08:00
print(f"current seed: {torch.initial_seed()}")
print(f"sampling {prompt} ...")
sample = pipeline(
prompt,
negative_prompt = n_prompt,
num_inference_steps = model_config.steps,
guidance_scale = model_config.guidance_scale,
width = model_config.W,
height = model_config.H,
video_length = model_config.L,
controlnet_images = controlnet_images,
controlnet_image_index = model_config.get("controlnet_image_indexs", [0]),
).videos
samples.append(sample)
prompt = "-".join((prompt.replace("/", "").split(" ")[:10]))
save_videos_grid(sample, f"{savedir}/sample/{sample_idx}-{prompt}.gif")
print(f"save to {savedir}/sample/{prompt}.gif")
sample_idx += 1
2023-07-09 21:32:22 +08:00
samples = torch.concat(samples)
save_videos_grid(samples, f"{savedir}/sample.gif", n_rows=4)
OmegaConf.save(config, f"{savedir}/config.yaml")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
2023-12-15 21:00:07 +08:00
parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion/stable-diffusion-v1-5",)
parser.add_argument("--inference-config", type=str, default="configs/inference/inference-v1.yaml")
2023-07-09 21:32:22 +08:00
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--L", type=int, default=16 )
parser.add_argument("--W", type=int, default=512)
parser.add_argument("--H", type=int, default=512)
2023-12-15 21:00:07 +08:00
parser.add_argument("--without-xformers", action="store_true")
2023-07-09 21:32:22 +08:00
args = parser.parse_args()
main(args)